Skip to main content
Log in

Strong quantum confinement effects in SnS nanocrystals produced by ultrasound-assisted method

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocrystalline SnS powder has been prepared using tin chloride (SnCl2) as a tin ion source and sodium sulfide (Na2S) as a sulfur ion source with the help of ultrasound irradiation at room temperature. The as-synthesized SnS nanoparticles were quantitatively analyzed and characterized in terms of their morphological, structural, and optical properties. The detailed structural and optical properties confirmed the orthorhombic SnS structure and a strongly blue shifted direct band gap (1.74 eV), for synthesized nanoparticles. The measured band gap energy of SnS nanoparticles is in a fairly good agreement with the results of theoretical calculations of exciton energy based on the potential morphing method in the Hartree–Fock approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  • Azizian-Kalandaragh Y, Khodayari A (2010a) Ultrasound-assisted preparation of CdSe nanocrystals in the presence of Polyvinyl alcohol as a capping agent. Mater Sci Semicond Process 13:225–230

    Article  CAS  Google Scholar 

  • Azizian-Kalandaragh Y, Khodayari A (2010b) Aqueous synthesis and characterization of nearly monodispersed ZnS nanocrystals. Phys Status Solidi A 207(9):2144–2148

    Article  CAS  Google Scholar 

  • Azizian-Kalandaragh Y, Khodayari A, Behboudnia M (2009) Ultrasound-assisted synthesis of ZnO semiconductor nanostructures. Mater Sci Semicond Process 12:142–145

    Article  CAS  Google Scholar 

  • Bashkirov SA, Gremenok VF, Ivanov VA (2011) Physical properties of SnS thin films fabricated by hot wall deposition. Fizika i Tekhnika Poluprovodnikov 45:765–769

    Google Scholar 

  • Baskoutas S (2005a) Excitons and charged excitons in InAs nanorods. Chem Phys Lett 404:107–111

    Article  CAS  Google Scholar 

  • Baskoutas S (2005b) Novel formulation of the Hartree–Fock approximation: effective band gap calculation of InAs nanorods. Phys Lett A 341:303–307

    Article  CAS  Google Scholar 

  • Baskoutas S, Terzis AF (2006) Size-dependent band gap of colloidal quantum dots. J Appl Phys 99:013708

    Article  Google Scholar 

  • Baskoutas S, Poulopoulos P, Karoutsos V, Angelakeris M, Flevaris NK (2006a) Strong quantum confinement effects in thin zinc selenide films. Chem Phys Lett 417:461–464

    Article  CAS  Google Scholar 

  • Baskoutas S, Terzis AF, Schommers W (2006b) Size-Dependent exciton energy of narrow band gap colloidal quantum dots in the finite depth square-well effective mass approximation. J Comp Theor Nanosci 3:269–271

    CAS  Google Scholar 

  • Bhattacharyya S, Gedanken A (2008) A template-free, sonochemical route to porous ZnO nano-disks. Microporous Mesoporous Mater 110:553–559

    Article  CAS  Google Scholar 

  • Biswas S, Kar S, Chaudhuri S (2007) Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets. Appl Surf Sci 253:9259–9266

    Article  CAS  Google Scholar 

  • Chandrasekhar HR, Humphreys RG, Zwick U, Cardona M (1977) Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Phys Rev B 15:2177–2183

    Article  CAS  Google Scholar 

  • Chazali A, Zainal Z, Hussein MZ, Kassim A (1998) Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media. Sol Energy Mater Sol Cells 55:237–249

    Article  Google Scholar 

  • Chen D, Shen G, Tang K, Lei S, Zheng H, Qian Y (2004) Microwave-assisted polyol synthesis of nanoscale SnSx (x = 1, 2) flakes. J Cryst Growth 260:469–474

    Article  CAS  Google Scholar 

  • El-Nahass MM, Zeyada HM, Aziz MS, El-Ghamaz NA (2002) Optical properties of thermally evaporated SnS thin films. Opt Mater 20:159–170

    Article  CAS  Google Scholar 

  • Engelken RD, McCloud HE, Lee C, Slayton M, Ghoreishi H (1987) Low temperature chemical precipitation and vapor deposition of Snx S thin films. J Electrochem Soc 134:2696–2707

    Article  CAS  Google Scholar 

  • Ghosh B, Das M, Banerjee P, Das S (2008) Fabrication and optical properties of SnS thin films by SILAR method. Appl Surf Sci 254:6436–6440

    Article  CAS  Google Scholar 

  • Goharshadi EK, Ding Y, Jorabchi MN, Nancarrow P (2009) Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultraso Sonochem 16:120–123

    Article  CAS  Google Scholar 

  • Gontard LC, Ozkaya D, Dunin-Borkowski R (2011) A simple algorithm for measuring particle size distributions on an uneven background from TEM images. Ultramicroscopy 111:101–106

    Article  CAS  Google Scholar 

  • Gou XL, Chen J, Shen PW (2005) Synthesis, characterization and application of SnSx (x = 1, 2) nanoparticles. Mater Chem Phys 93:557–566

    Article  CAS  Google Scholar 

  • Greiner W (1989) Quantum mechanics: an introduction. Springer, Berlin

    Google Scholar 

  • Guinier A (1963) X-Ray diffraction. In: Crystals, imperfect crystals, and amorphous bodies, Freeman, Sanfrancisco

  • Hanken H (1956) Nuovo Cim 3:1230

  • Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  • Johson JB, Jones H, Latham BS, Parker JD, Engelken RD, Barber C (1999) Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films. Semicond Sci Technol 14:501–507

    Article  Google Scholar 

  • Li Q, Ding Y, Wu H, Liu X, Qian Y (2002) Fabrication of layered nanocrystallites SnS and β-SnS2 via a mild solution route. Mater Res Bull 37:925–932

    Article  CAS  Google Scholar 

  • Liu Y, Xu Y, Li JP, Zhang B, Wu D, Sun YH (2006) Synthesis of CdSxSe1-x nanorods via a solvothermal route. Mater Res Bull 41:99–109

    Article  CAS  Google Scholar 

  • Liu H, Liu Y, Wang Z, He P (2010) Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 21:105707

    Article  Google Scholar 

  • Mahendia S, Tomar AK, Chahal RP, Goyal P, Kumar S (2011) Optical and structural properties of poly(vinyl alcohol) films embedded with citrate-stabilized gold nanoparticles. J. Phys. D 44:205105

    Article  Google Scholar 

  • Nanda KK, Kruis FE, Fissan H (2004) Effective mass approximation for two extreme semiconductors: band gap of PbS and CuBr nanoparticles. J Appl Phys 95:5035–5043

    Article  CAS  Google Scholar 

  • Ning J, Men K, Xiao G, Wang L, Dai Q, Zou B, Liu B, Zou G (2010) Facile synthesis of IV–VI SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets. Nanoscale 2:1699–1703

    Article  CAS  Google Scholar 

  • Nozaki H, Onoda M, Dekita M, Kosuda K, Wada T (2005) Variation of lattice dimensions in epitaxial SnS films on MgO(001). J Solid State Chem 178:245–252

    Article  CAS  Google Scholar 

  • Ögüt S, Chelikowsky JR, Louie SG (1997) Quantum confinement and optical gaps in Si nanocrystals. Phys Rev Lett 79:1770–1773

    Article  Google Scholar 

  • Ortiz A, Alonso JC, Garcia M, Toriz J (1996) Tin sulphide films deposited by plasma-enhanced chemical vapour deposition. Semicond Sci Technol 11:243–247

    Article  CAS  Google Scholar 

  • Panda SK, Gorai S, Chaudhuri S (2006) Shape selective solvothermal synthesis of SnS: role of ethylenediamine–water solvent system. Mater Sci Eng B 129:265–269

    Article  CAS  Google Scholar 

  • Parenteau M, Carlone C (1990) Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors. Phys Rev B 41:5227–5234

    Article  CAS  Google Scholar 

  • Paul GS, Agarwal P (2007). Structural and stability studies of SnS nanoflakes synthesized by solvothermal process for solar photovoltaic applications. IEEE Conference Proceedings, pp. 884–886

  • Paul GS, Gogoi P, Agarwal P (2008) Structural and stability studies of CdS and SnS nanostructures synthesized by various routes. J Non-Cryst Solids 354:2195–2199

    Article  CAS  Google Scholar 

  • Pellegrini G, Mattei G, Mazzoldi P (2005) Finite depth square well model: applicability and limitations. J Appl Phys 97:073706–073713

    Article  Google Scholar 

  • Poulopoulos P, Baskoutas S, Pappas SD, Garoufalis CS, Droulias SA, Zamani A, Kapaklis V (2011) Intense quantum confinement effects in Cu2O thin films. J Phys Chem C 115:14839–14843

    Article  CAS  Google Scholar 

  • Price LS, Parkin IP, Field MN, Hardy AME, Clark RJH, Hibbert TG, Molloy KC (2000) Atmospheric pressure chemical vapour deposition of tin(II) sulfide films on glass substrates from Bun3SnO2CCF3 with hydrogen sulfide. J Mater Chem 10:527–530

    Article  CAS  Google Scholar 

  • Qian XF, Zhang XM, Wang C, Wang WZ, Xie Y, Qian YT (1999) Solvent–thermal preparation of nanocrystalline tin chalcogenide. J Phys Chem Solids 60:415–417

    Article  CAS  Google Scholar 

  • Rama Krishna MV, Friesner RA (1991) Quantum confinement effects in semiconductor clusters. J Chem Phys 95:8309–8322

    Article  Google Scholar 

  • Reddy KTR, Reddy PP (2002) Structural studies on SnS films grown by a two-stage process. Mater Lett 56:108–111

    Article  Google Scholar 

  • Reddy NK, Reddy KTR (2006) Optical behaviour of sprayed tin sulphide thin films. Mat Res Bull 41:414–422

    Article  CAS  Google Scholar 

  • Reddy NK, Reddy KTR, Fisher G, Best R, Dutta PK (1999) The structural behaviour of layers of SnS grown by spray pyrolysis. J Phys D 32:988–990

    Article  CAS  Google Scholar 

  • Rieth M, Schommers W, Baskoutas S (2002) Exact numerical solution of Schrödinger’s equation for a particle in an interaction potential of general shape. Int J Mod Phys B 16:4081

    Article  Google Scholar 

  • Rudel H (2003) Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf 56:180–189

    Article  CAS  Google Scholar 

  • Suslick KS (1988) Ultrasound: its chemical, physical, and biological effects. VCH, New York

    Google Scholar 

  • Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  CAS  Google Scholar 

  • Suslick K, Doktycz S, Flint E (1990) On the origin of sonoluminescence and sonochemistry. Ultrasonics 28:280–290

    Article  CAS  Google Scholar 

  • Takeuchi K, Ichimura M, Arai E, Yamazaki Y (2003) SnS thin films fabricated by pulsed and normal electrochemical deposition. Sol Energy Mater Sol Cells 75:427–432

    Article  CAS  Google Scholar 

  • Tanusevski A (2003) Optical and photoelectric properties of SnS thin films prepared by chemical bath deposition. Semicond Sci Technol 18:501

    Article  CAS  Google Scholar 

  • Thangaraju B, Kaliannan P (2000) Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J Phys D 33:1054–1059

    Article  CAS  Google Scholar 

  • Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858

    Article  CAS  Google Scholar 

  • Vidal J, Lany S, d’Avezac M, Zunger A, Zakutayev A, Francis J, Tate J (2012) Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett 100:032104–032107

    Article  Google Scholar 

  • Wang Y, Herron N (1990) Quantum size effects on the exciton energy of CdS clusters. Phys Rev B 42:7253–7255

    Article  CAS  Google Scholar 

  • Wang H, Zhang JR, Zhao XN, Xu S, Zhu JJ (2002) Preparation of copper monosulfide and nickel monosulfide nanoparticles by sonochemical method. Mater Lett 55:253–258

    Article  CAS  Google Scholar 

  • Winship KA (1998) Toxicity of tin and its compounds. Adverse Drug React Acute Poisoning Rev 7:19–38

    Google Scholar 

  • Yue GH, Peng DL, Yan PX, Wang LS, Wang W, Luo XH (2009) Structure and optical properties of SnS thin film prepared by pulse electrodeposition. J Alloy Compd 468:254–257

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang Z, Dang H, Liu W (2004) Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater Sci Eng B 113:175–178

    Google Scholar 

  • Zhu L, Meng J, Cao X (2008) Sonochemical synthesis of monodispersed KY3F10:eu3+ nanospheres with bimodal size distribution. Mater Lett 62:3007–3009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support by the University of Mohaghegh Ardabili, Ardabil, Iran, to carry out this study is gratefully acknowledged. The authors (S. Baskoutas, Z. Zeng and Ch. S. Garoufalis) acknowledge the European Union (European Regional Development Fund-ERDF) and Greek national funds through the Operational Program “Regional Operational Programme” of the National Strategic Reference Framework (NSRF)-Research Funding Program: Support for research, technology and innovation actions in Region of Western Greece (MIS: 312123, D.237.002) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashar Azizian-Kalandaragh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azizian-Kalandaragh, Y., Khodayari, A., Zeng, Z. et al. Strong quantum confinement effects in SnS nanocrystals produced by ultrasound-assisted method. J Nanopart Res 15, 1388 (2013). https://doi.org/10.1007/s11051-012-1388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1388-1

Keywords

Navigation