Skip to main content
Log in

Growth of uniform thin-walled carbon nanotubes with spin-coated Fe catalyst and the correlation between the pre-growth catalyst size and the nanotube diameter

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (CNTs) and double-walled CNTs with a selectivity of 93 % were obtained by means of the novel homemade iron catalysts which were spin coated on silicon wafer. The average diameters of the iron particles prepared from the colloidal solutions containing 30, 40, 50, 60, and 70 mmol/L of iron nitrate were 8.2, 5.1, 20.8, 32.2, and 34.7 nm, respectively, and growing thin-walled CNTs with the average diameters of 4.1, 2.2, 9.2, 11.1, and 18.1 nm, respectively. The diameters of the CNTs were correlated with the geometric sizes of the pre-growth catalyst particles. Thin-walled CNTs were found to have a catalyst mean diameter-to-CNT average diameter ratio of 2.31. Iron carbide was formed after the growth of CNTs, and it is believed that during the growth of CNTs, carbon source decomposed and deposited on the surface of catalyst, followed by the diffusion of surface carbon into the iron catalyst particles, resulting in carbon supersaturation state before the growth of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amama PB, Maschmann MR, Fisher TS, Sands TD (2006) Dendrimer-templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD. J Phys Chem B 110(22):10636–10644

    Article  CAS  Google Scholar 

  • Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT, Hauge RH, Maruyama B (2009) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9(1):44–49

    Article  CAS  Google Scholar 

  • Bennett RD, Xiong GY, Ren ZF, Cohen RE (2004) Using block copolymer micellar thin films as templates for the production of catalysts for carbon nanotube growth. Chem Mater 16(26):5589–5595

    Article  CAS  Google Scholar 

  • Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    Article  CAS  Google Scholar 

  • Borowiak-Palen E (2007) Single-walled carbon nanotubes as nanotest tubes. Phys Status Solidi (B) 244(11):4311–4314

    Article  CAS  Google Scholar 

  • Chai S-P, Seah C-M, Mohamed AR (2011) A parametric study of methane decomposition into carbon nanotubes over 8Co–2Mo/Al2O3 catalyst. J Nat Gas Chem 20(1):84–89

    Article  CAS  Google Scholar 

  • Chen B, Wu P (2005) Aligned carbon nanotubes by catalytic decomposition of C2H2 over Ni–Cr alloy. Carbon 43(15):3172–3177

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409(2):47–99

    Article  Google Scholar 

  • Esconjauregui S, Whelan CM, Maex K (2009) The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47(3):659–669

    Article  CAS  Google Scholar 

  • Fu Q, Huang S, Liu J (2004) Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform Fe2O3 nanoclusters synthesized using diblock copolymer micelles. J Phys Chem B 108(20):6124–6129

    Article  CAS  Google Scholar 

  • Hasegawa K, Noda S (2010) Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth. Appl Phys Express 3(4):045103

    Article  Google Scholar 

  • Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C, Cantoro M, Pisana S, Parvez A, Cervantes-Sodi F, Ferrari AC, Dunin-Borkowski R, Lizzit S, Petaccia L, Goldoni A, Robertson J (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7(3):602–608

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  CAS  Google Scholar 

  • Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett 86(6):1118

    Article  CAS  Google Scholar 

  • Kanzow H, Ding A (1999) Formation mechanism of single-wall carbon nanotubes on liquid–metal particles. Phys Rev B 60(15):11180

    Article  CAS  Google Scholar 

  • Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11(6):910–917

    Article  CAS  Google Scholar 

  • Kukovitsky EF, L’Vov SG, Sainov NA, Shustov VA, Chernozatonskii LA (2002) Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett 355(5–6):497–503

    Article  CAS  Google Scholar 

  • LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321(5885):101–104

    Article  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  Google Scholar 

  • Murakami Y, Miyauchi Y, Chiashi S, Maruyama S (2003a) Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem Phys Lett 377(1–2):49–54

    Article  CAS  Google Scholar 

  • Murakami Y, Yamakita S, Okubo T, Maruyama S (2003b) Single-walled carbon nanotubes catalytically grown from mesoporous silica thin film. Chem Phys Lett 375(3–4):393–398

    Article  CAS  Google Scholar 

  • Nasibulin AG, Pikhitsa PV, Jiang H, Kauppinen EI (2005) Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 43(11):2251–2257

    Article  CAS  Google Scholar 

  • Pan C, Liu Y, Cao F, Wang J, Ren Y (2004) Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames. Micron 35(6):461–468

    Article  CAS  Google Scholar 

  • Parshetti GK, Doong R (2009) Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Res 43(12):3086–3094

    Article  CAS  Google Scholar 

  • Seah C-M, Chai S-P, Mohamed AR (2011) Synthesis of aligned carbon nanotubes. Carbon 49(14):4613–4635

    Article  CAS  Google Scholar 

  • Seah C-M, Chai S-P, Ichikawa S, Mohamed AR (2012) Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol-PEG colloidal solution. Carbon 50:960–967

    Article  CAS  Google Scholar 

  • Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  CAS  Google Scholar 

  • Yoshida H, Takeda S, Uchiyama T, Kohno H, Homma Y (2008) Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8(7):2082–2086

    Article  CAS  Google Scholar 

  • Zhang XX, Li ZQ, Wen GH, Fung KK, Chen J, Li Y (2001) Microstructure and growth of bamboo-shaped carbon nanotubes. Chem Phys Lett 333(6):509–514

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Universiti Sains Malaysia (USM Fellowship), Fundamental Research Grant Scheme (FRGS), the Long Term Research Scheme (LRGS) and APEX DE 2012. The authors would like to thank Prof. Tadashi Itoh from Osaka University for allowing the authors to use HR-TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rahman Mohamed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,936 kb)

Supplementary material 2 (DOC 7,271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seah, CM., Chai, SP., Ichikawa, S. et al. Growth of uniform thin-walled carbon nanotubes with spin-coated Fe catalyst and the correlation between the pre-growth catalyst size and the nanotube diameter. J Nanopart Res 15, 1371 (2013). https://doi.org/10.1007/s11051-012-1371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1371-x

Keywords

Navigation