Skip to main content
Log in

A novel method for surface modification of nanoparticles based on control of charge environment

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel procedure for surface modification of SiO2 nanoparticles is described. Tetraoctylammonium bromide was introduced to modification system for the purpose of controlling the surface charge environment of SiO2 nanoparticles. Then, the SiO2 nanoparticles were treated with the coupling agents firstly, followed by radical grafting polymerization in non-aqueous system to graft Poly (methyl methacrylate) chains onto the surface of modified SiO2 nanoparticles. Fourier transform infrared spectroscopy, thermogravimetric analysis, high-resolution X-ray photoelectron spectra, and 13C nuclear magnetic resonance were used to characterize the modification effect of SiO2 nanoparticles. The results indicated that the method we described is an effective way to modify the surface of nanoparticles. And the morphology and characteristic of SiO2 nanoparticles were characterized by transmission electron microscopy (TEM), quasielastic laser light scattering (QELS), dynamic contact angle. The results of TEM and QELS demonstrated that nanosilica with an average size of 85.8 nm was prepared. The reduction of the contact angle indicated the increase in hydrophobicity of nanosilica. The result of controlling the surface charge environment of SiO2 nanoparticles was characterized by zeta potential. By using this modification method, nanoparticles are of great potential to synthesize versatile organic/inorganic nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TOAB:

Tetraoctylammonium bromide

TOA+:

Tetraoctammonium

MMA:

Methyl methacrylate

PMMA:

Poly (methyl methacrylate)

FT-IR:

Fourier transform-infrared spectroscopy

TGA:

Thermogravimetric analysis

XPS:

X-ray photoelectron spectra

13C NMR:

13C nuclear magnetic resonance

TEM:

Transmission electron microscopy

QELS:

Quasielastic laser light scattering

DCA:

Dynamic contact angle

KH570:

γ-methacyloxypropyl trimethoxy silane

ATRP:

Atom-transfer radical polymerization

BPO:

Benzoyl peroxide

References

  • Adamczyk Z (2003) Particle adsorption and deposition: role of electrostatic interactions. Adv Colloid Interface Sci 100–102:267–347. doi:10.1016/S0001-8686(02)00062-3

    Article  Google Scholar 

  • Bag DS, Bhasker Rao KU (2010) Synthesis of UV-curable difunctional silane monomer based on 3-methacryloxy propyl trimethoxysilane (3-MPTS) and its UV-curing characteristics and thermal stability. J Appl Polym Sci 115:2352–2358. doi:10.1002/app.31266

    Article  CAS  Google Scholar 

  • Barhoumi H, Maaref A, Jaffrezic-Renault N (2010) Experimental study of thermodynamic surface characteristics and pH sensitivity of silicon dioxide and silicon nitride. Langmuir 26:7165–7173. doi:10.1021/la904251m

    Article  CAS  Google Scholar 

  • Bourgeat-Lami E, Lang J (1998) Encapsulation of inorganic particles by dispersion polymerization in polar media—1. Silica nanoparticles encapsulated by polystyrene. J Colloid Interface Sci 197:293–308. doi:10.1006/jcis.1997.5265

    Article  CAS  Google Scholar 

  • Caruso F, Mayya KS (2003) Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir 19:6987–6993. doi:10.1021/la034018+

    Article  Google Scholar 

  • Chen M, Wu LM, Zhou SX, You B (2004) Synthesis of raspberry-like PMMA/SiO2 nanocomposite particles via a surfactant-free method. Macromolecules 37:9613–9619. doi:10.1021/ma048431f

    Article  CAS  Google Scholar 

  • Chen M, Zhou SX, You B, Wu LM (2005a) A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres. Macromolecules 38:6411–6417. doi:10.1021/ma050132i

    Article  CAS  Google Scholar 

  • Chen P, Long J, Hyder MN, Huang RYM (2005b) Thermodynamic modeling of contact angles on rough, heterogeneous surfaces. Adv Colloid Interface 118:173–190. doi:10.1016/j.cis.2005.07.004

    Article  Google Scholar 

  • Chen JC, Luo WQ, Wang HD, Xiang JM, Jin HF, Chen F, Cai ZW (2010) A versatile method for the preparation of end-functional polymers onto SiO2 nanoparticles by a combination of surface-initiated ATRP and Huisgen [3+2] cycloaddition. Appl Surf Sci 256:2490–2495. doi:10.1016/j.apsusc.2009.10.093

    Article  CAS  Google Scholar 

  • Du QG, Xu P, Wang HT, Tong R, Zhong W (2006) Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid Polym Sci 284:755–762. doi:10.1007/s00396-005-1428-9

    Article  Google Scholar 

  • Gao G (2004) Nanostructures & nanomaterials—synthesis, properties & applications. Imperial College Press, London

    Google Scholar 

  • Huang FH, Chang CC, Oyang TY, Chen CC, Cheng LP (2011) Preparation of almost dispersant-free colloidal silica with superb dispersibility in organic solvents and monomers. J Nanopart Res 13:3885–3897. doi:10.1007/s11051-011-0342-y

    Article  CAS  Google Scholar 

  • Iijima M, Kamiya H (2010) Layer-by-layer surface modification of functional nanoparticles for dispersion in organic solvents. Langmuir 26:17943–17948. doi:10.1021/la1030747

    Article  CAS  Google Scholar 

  • Jamison JA, Bryant EL, Kadali SB, Wong MS, Colvin L, Matthews KS, Calabretta MK (2011) Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation. J Nanopart Res 13:625–636. doi:10.1007/s11051-010-0057-5

    Article  CAS  Google Scholar 

  • Jasiuk I, Jordan J, Jacob KI, Tannenbaum R, Sharaf MA (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A-Struct 393:1–11. doi:10.1016/j.msea.2004.09.044

    Article  Google Scholar 

  • Khaled SM, Sui R, Charpentier PA, Rizkalla AS (2007) Synthesis of TiO2-PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir 23:3988–3995. doi:10.1021/la062879n

    Article  CAS  Google Scholar 

  • Lee KH, Rhee SH (2009) The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2–CaO nanocomposite. Biomaterials 30:3444–3449. doi:10.1016/j.biomaterials.2009.03.002

    Article  CAS  Google Scholar 

  • Lee SW, Park SE, Park SJ (2007) Effect of electrostatic force on surface charges of colloidal particles and retardation of membrane fouling. J Ind Eng Chem 13:395–399

    CAS  Google Scholar 

  • Lee JK, Kim YJ, Ha SW, Jeon SM, Yoo DW, Chun SH, Sohn BH (2010) Fabrication of triacetylcellulose–SiO2 nanocomposites by surface modification of silica nanoparticles. Langmuir 26:7555–7560. doi:10.1021/la904362x

    Article  Google Scholar 

  • Mao YY, McClements DJ (2012) Fabrication of viscous and paste-like materials by controlled heteroaggregation of oppositely charged lipid droplets. Food Chem 134:872–879. doi:10.1016/j.foodchem.2012.02.196

    Article  CAS  Google Scholar 

  • Marmur A (1998) Contact-angle hysteresis on heterogeneous smooth surfaces: theoretical comparison of the captive bubble and drop methods. Colloid Surf A 136:209–215. doi:10.1016/S0927-7757(97)00346-4

    Article  CAS  Google Scholar 

  • Marmur A, Bittoun E (2010) Chemical nano-heterogeneities detection by contact angle hysteresis: theoretical feasibility. Langmuir 26:15933–15937. doi:10.1021/la102757t

    Article  Google Scholar 

  • Mizoshita N, Goto Y, Tani T, Inagaki S (2009) Efficient visible-light emission from dye-doped mesostructured organosilica. Adv Mater 21:4798–4801. doi:10.1002/adma.200901168

    Article  CAS  Google Scholar 

  • Nakanishi E, Sugimoto H, Daimatsu K, Ogasawara Y, Yasumura T, Inomata K (2006) Preparation and properties of poly(methylmethacrylate)-silica hybrid materials incorporating reactive silica nanoparticles. Polymer 47:3754–3759. doi:10.1016/j.polymer.2006.04.002

    Article  Google Scholar 

  • Nelson GL, Yang F (2004) PMMA/silica nanocomposite studies: synthesis and properties. J Appl Polym Sci 91:3844–3850. doi:10.1002/app.13573

    Article  Google Scholar 

  • Prozorov R, Prozorov T, Kataby G, Gedanken A (1999) Effect of surfactant concentration on the size of coated ferromagnetic nanoparticles. Thin Solid Films 340:189–193. doi:10.1016/S0040-6090(98)01400-X

    Article  CAS  Google Scholar 

  • Rohani MM, Zydney AL (2010) Role of electrostatic interactions during protein ultrafiltration. Adv Colloid Interface Sci 160:40–48. doi:10.1016/j.cis.2010.07.002

    Article  CAS  Google Scholar 

  • Shim SE, Lee J, Hong CK, Choe S (2007) Synthesis of polystyrene/silica composite particles by soap-free emulsion polymerization using positively charged colloidal silica. J Colloid Interface Sci 310:112–120. doi:10.1016/j.jcis.2006.11.008

    Article  Google Scholar 

  • Sluszny A, Silverstein MS, Kababya S, Schmidt A, Narkis M (2001) Novel semi-IPN through vinyl silane polymerization and crosslinking within PVC films. J Polym Sci A Polym Chem 39:8–22. doi:10.1002/1099-0518(20010101)39:1<8:AID-POLA20>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  • Still T, Sainidou R, Retsch M, Jonas U, Spahn P, Hellmann GP, Fytas G (2008) The “Music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale. Nano Lett 8:3194–3199. doi:10.1021/nl801500n

    Article  CAS  Google Scholar 

  • Tanami G, Gutkin V, Mandler D (2010) Thin nanocomposite films of polyaniline/Au nanoparticles by the Langmuir–Blodgett technique. Langmuir 26:4239–4245. doi:10.1021/la903284g

    Article  CAS  Google Scholar 

  • Tsubokawa N, Ishida H (1992) Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface. J Polym Sci A Polym Chem 30:2241–2246. doi:10.1002/pola.1992.080301020

    Article  CAS  Google Scholar 

  • Wang E, Cheng WL (2004) Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: a wholly electrostatic interaction. J Phys Chem B 108:24–26. doi:10.1021/jp036522t

    Article  Google Scholar 

  • Wittmar A, Ruiz-Abad D, Ulbricht M (2012) Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology. J Nanopart Res 14. doi: 10.1007/s11051-011-0651-1

  • Yao H, Momozawa O, Hamatani T, Kimura K (2000) Phase transfer of gold nanoparticles across a water/oil interface by stoichiometric ion-pair formation on particle surfaces. B Chem Soc Jpn 73:2675–2678. doi:10.1246/bcsj.73.2675

    Article  CAS  Google Scholar 

  • Yao H, Momozawa O, Hamatani T, Kimura K (2001) Stepwise size-selective extraction of carboxylate-modified gold nanoparticles from an aqueous suspension into toluene with tetraoctylammonium cations. Chem Mater 13:4692–4697. doi:110.1021/cm0104957

    Article  CAS  Google Scholar 

  • Zhang L, Su D, Jin L, Li CZ (2012) Polyamide 6 composites reinforced with glass fibers modified with electrostatically assembled multiwall carbon nanotubes. J Mater Sci 47:5446–5454. doi:10.1007/s10853-012-6434-y

    Article  CAS  Google Scholar 

  • Zuo J, Torres E (2010) Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO2 and hydroxylated SiO2. Langmuir 26:15161–15168. doi:10.1021/la102221v

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by Program for New Century Excellent Talents in University, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Q., Wang, P., Wang, L. et al. A novel method for surface modification of nanoparticles based on control of charge environment. J Nanopart Res 15, 1363 (2013). https://doi.org/10.1007/s11051-012-1363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1363-x

Keywords

Navigation