Skip to main content
Log in

Catalyst-free direct growth of InP quantum dots on Si by MOCVD: a step toward monolithic integration

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

InP quantum dots (QDs) were grown on catalyst-free Si substrates by MOCVD to study the behavior of growth of low dimensional III–V structures on Si substrates. It is found that at temperature 575 °C, uniform QDs with diameter 20–50 nm and height 6–8 nm were obtained, whereas at 600 °C, InP nanoislands with wetting layers were formed instead of QDs. From the photoluminescence measurements, blue shift of the band gap is observed with a value of 1.395 eV. The densities of the QDs were found to be 7–8 × 1013 m−2. X-ray photoelectron spectroscopy establishes the presence of InP rather than indium droplet. X-ray diffraction spectra show different surface planes of the QDs. The effect of growth temperature has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abuwaar ZY, Marega E Jr, Mortazavi M, Salamo GJ (2008) In situ photoluminescence study of uncapped InAs/GaAs quantum dots. Nanotechology 19:335712

    Article  Google Scholar 

  • Allen PM, Walker BJ, Bawendi MG (2010) Mechanistic insights into the formation of InP quantum dots. Angew Chem Int Ed 49:760–762

    Article  CAS  Google Scholar 

  • Ayers JE (2007) Heteroepitaxy of semiconductors theory. CRC Press, Boca Raton, Growth and characterization

    Book  Google Scholar 

  • Bietti S, Somaschini C, Sarti E, Koguchi N, Sanguinett S, Isella G, Chrastina D, Fedorov A (2010) Photoluminescence study of low thermal budget III–V nanostructures on silicon by droplet epitaxy. Nanoscale Res Lett 5:1650–1653

    Article  CAS  Google Scholar 

  • Dreybrodt J, Forchel A, Reithmaier JP (1993) Optical properties of Ga0.8In0.2As/GaAs surface quantum well. Phys Rev B 48:14741–14744

    Article  CAS  Google Scholar 

  • Egorov AY, Kovsh AR, Ustinov VM, Zhukov AE, Maksimov MV, Cirlin GE, Ledentsov NN, Bimberg D, Werner P, Alferov ZI (1999) Self-organised InAs quantum dots in a silicon matrix. J Crystal Growth 201(202):1202–1204

    Article  Google Scholar 

  • Heitz R, Ledentsov NN, Bimberg D, Egorov AY, Maximov MV, Ustinov VM, Zhukov AE, Alferov ZI, Cirin GE, Soshnikov IP, Zakharov ND, Werner P, Gösele (1999) Optical properties of InAs quantum dots in a Si matrix. Appl Phys Lett 74:1701–1703

    Article  CAS  Google Scholar 

  • Ivanov T, Donchev V, Germanova K, Gomes PF, Iikawa F, Brasil MJSP, Cotta MA (2011) Optical properties of multi-layer type II InP/GaAs quantum dots studied by surface photovoltage spectroscopy. J Appl Phys 110:064302

    Article  Google Scholar 

  • Kumar M, Roul B, Bhat TN, Rajpalke MK, Sinha N, Kalghatgi AT, Krupanidhi SB (2011) Kinetics of self-assembled InN quantum dots grown on Si (111) by plasma-assisted MBE. J Nanopart Res 13:1281–1287

    Article  CAS  Google Scholar 

  • Liang D, Bowers JE (2010) Recent progress in lasers on silicon. Nat Photonics 4:511–517

    Article  CAS  Google Scholar 

  • Lockwood DJ (2009) Light emission in silicon nanostructures. J Mater Sci Mater Electron 20:S235–S244

    Article  Google Scholar 

  • Lu H, Thothathiri M, Wu Z, Bhat I (1997) Study of indium droplets formation on the InxGal–XN by single crystal x-ray diffraction. J Electron Mater 26:281–284

    Article  CAS  Google Scholar 

  • Lucey DW, MacRae DJ, Furis M, Sahoo Y, Cartwright AN, Prasad PN (2005) Monodispersed InP quantum dots prepared by colloidal chemistry in a non-coordinating solvent. Chem Mater 17:3754–3762

    Article  CAS  Google Scholar 

  • Luxmoore IJ, Ahmadi ED, Wasley NA, Fox AM, Tartakovskii AI, Krysa AB, Skolnick MS (2010) Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities. Appl Phys Lett 97:1811041–1811043

    Article  Google Scholar 

  • Masselink WT, Hatami F, Mussler G, Schrottke L (2001) InP quantum dots in (100) GaP: growth and luminescence. Mat Sci Semicon Proc 4:497–501

    Article  CAS  Google Scholar 

  • Métois JJ, Müller P (2004) Absolute surface energy determination. Surf Sci 548:13–21

    Article  Google Scholar 

  • Mi Z, Yang J, Bhattacharya P, Qin G, Ma Z (2009) High-performance quantum dot lasers and integrated optoelectronics on Si. Proc IEEE 97:1239–1249

    Article  CAS  Google Scholar 

  • Miao ZL, Zhang YW, Chua SJ, Chye YH, Chen P, Tripathy S (2005) Optical properties of InAs/GaAs surface quantum dots. Appl Phys Lett 86:0319141–0319143

    Article  Google Scholar 

  • Razeghi M (2011) The MOCVD challenge: a survey of GaInAsP-InP and GaInAsP-GaAs for photonic and electronic device applications. CRC Press, Boca Raton

    Google Scholar 

  • Stubbs SK, Hardman SJO, Graham DM, Spencer BF, Flavell WR, Glarvey P, Masala O, Pickett NL, Binks DJ (2010) Efficient carrier multiplication in InP nanoparticles. Phys Rev B 81:081303(R)

    Article  Google Scholar 

  • Suemitsu M, Filimonov SN (2011) Understanding crystal growth mechanisms in silicon-germanium (SiGe) nanostructures. In: Shiraki Y, Usami N (eds) Silicon-germanium (SiGe) nanostructures production, properties and application in electronics. Woodhead Publishing Limited, Philadelphia, pp 50–68

    Google Scholar 

  • Van de Walle CG (1989) Band lineups and deformation potentials in model-solid theory. Phys Rev B 39:1871–1883

    Article  Google Scholar 

  • Zhang XB, Heller RD, Noh MS, Dupuis RD, Walter G, Holonyak N (2003) Growth of InP quantum dots on vicinal GaAs (100) substrates by metalorganic chemical vapor deposition. Appl Phys Lett 83:476–478

    Article  CAS  Google Scholar 

  • Zhu XD (1998) Determination of surface-diffusion kinetics of adatoms in epitaxy under step-flow growth conditions. Phys Rev B Condens Matter 57:R9478–R9481

    Article  CAS  Google Scholar 

  • Zundel MK, Specht P, Eberl K, Jin-Phillipp NY, Phillipp F (1997) Structural and optical properties of vertically aligned InP quantum dots. Appl Phys Lett 71:2972

    Article  CAS  Google Scholar 

  • Zundel MK, Eberl K, Jin-Phillipp NY, Phillipp F, Ried T, Fehrenbacher E, Hangleiter A (1999) Self-assembled InP quantum dots for red LEDs on Si and injection lasers on GaAs. J Crys Growth 201(202):1121–1125

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (N. N. Halder) acknowledges financial help from the MEP Project (Department of Science and Technology, New Delhi). The authors are thankful to Mr. P. Chakraborty for his technical help in the growth, Ms. S. Roy (Chemical Engineering, IIT, Kharagpur) for AFM, and Dr. T. Shripathi (UGC-DAE CSR, Indore) for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Banerji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halder, N.N., Kundu, S., Mukherjee, R. et al. Catalyst-free direct growth of InP quantum dots on Si by MOCVD: a step toward monolithic integration. J Nanopart Res 14, 1279 (2012). https://doi.org/10.1007/s11051-012-1279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1279-5

Keywords

Navigation