Skip to main content
Log in

Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles’ surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 μg/cm3 in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arbab AS, Jordan EK, Wilson LB, Yocum GT, Lewis BK, Frank JA (2004) In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 15:351–360. doi:10.1089/104303404322959506

    Article  CAS  Google Scholar 

  • Bhattacharya D, Sahu SK, Banerjee I, Das M, Mishra D, Maiti TK, Pramanik P (2011) Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles. J Nanopart Res 13:4137–4188. doi:10.1007/s11051-011-0362-7

    Article  Google Scholar 

  • Bhattarai SR, Kc RB, Kim SY, Sharma M, Khil MS, Hwang PH, Chung GH, Kim HY (2008) N-hexanoyl chitosan stabilized magnetic nanoparticles: implication for cellular labeling and magnetic resonance imaging. J Nanobiotehnol 6:1. doi:10.1186/1477-3155-6-1

    Article  Google Scholar 

  • Brittenham GM, Farrell DE, Harris JW, Feldman ES, Danish EH, Muir WA, Tripp JH, Bellon EM (1982) Magnetic-susceptibility measurement of human iron stores. N Engl J Med 307:1671–1675

    Article  CAS  Google Scholar 

  • Čampelj S, Makovec D, Drofenik M (2008) Preparation and properties of water-based magnetic fluids. J Phys Condens Mater 20:204101. doi:10.1088/0953-8984/20/20/204101

    Article  Google Scholar 

  • Čampelj S, Makovec D, Drofenik M (2009) Functionalization of magnetic nanoparticles with 3-aminopropyl silane. J Magn Magn Mater 321:1346–1350. doi:10.1016/j.jmmm.2009.02.036

    Google Scholar 

  • Chen ZP, Xu RZ, Zhang Y, Gu N (2008) Effects of proteins from culture medium on surface property of silanes-functionalized magnetic nanoparticles. Nanoscale Res Lett 4:204–209. doi:10.1007/s11671-008-9226-1

    Article  Google Scholar 

  • Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, Tillement O (2009) Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5:2565–2575. doi:10.1002/smll.200900563

    Google Scholar 

  • Flynn E, Bryant H (2005) A biomagnetic system for in vivo cancer imaging. Phys Med Biol 50:1273–1293. doi:10.1088/0031-9155/50/6/016

    Article  CAS  Google Scholar 

  • Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH, Bulte JW (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487. doi:10.1148/radiol.2281020638

    Article  Google Scholar 

  • Ge S, Shi X, Baker JR, Banaszak Holl MM, Orr BG (2009) Development of a remanence measurement based SQUID system with in-depth resolution for nanoparticle imaging. Phys Med Biol 54:177–188. doi:10.1088/0031-9155/54/10/N01

    Google Scholar 

  • Hafeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharmaceut 6:1417–1428. doi:10.1021/mp900083m

    Google Scholar 

  • Hashimoto S, Oda T et al (2009) The measurements of small magnetic signals from magnetic nanoparticles attached to the cell surface and surrounding living cells using a general purpose SQUID magnetometer. Phys Med Biol 54:2571–2583. doi:10.1088/0031-9155/54/8/021

    Article  CAS  Google Scholar 

  • Jo JI, Aoki I, Tabata Y (2010) Design of iron oxide nanoparticles with different sizes and surface charges for simple and efficient labeling of mesenchymal stem cells. J Control Rel 142:465–473. doi:10.1016/j.jconrel.2009.11.014

    Google Scholar 

  • Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Rel 120:18–26. doi:10.1016/j.jconrel.2007.03.012

    Google Scholar 

  • Kralj S, Makovec D, Čampelj S, Drofenik M (2010) Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J Magn Magn Mater 322:1847–1853. doi:10.1016/j.jmmm.2009.12.038

    Google Scholar 

  • Kralj S, Drofenik M, Makovec D (2011) Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups. J Nanopart Res 13:2829–2841. doi:10.1007/s11051-010-0171-4

    Article  CAS  Google Scholar 

  • Lee PW, Hsu SH, Wang JJ, Tsai JS, Lin KJ, Wey SP, Chen FR, Lai CH, Yen TC, Sung HW (2010) The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles. Biomaterials 31:1316–1324. doi:10.1016/j.biomaterials.2009.11.010

    Google Scholar 

  • Lien Y-H, Wu T-M, Wu J-H, Liao J-W (2011) Cytotoxicity and drug release behavior of PNIPAM grafted on silica-coated iron oxide nanoparticles. J Nanopart Res 13:5065–5075. doi:10.1007/s11051-011-0487-8

    Article  CAS  Google Scholar 

  • Lorenz MR, Holzapfel V, Musyanovych A, Nothelfer K, Walther P, Frank H, Landfester K, Schrezenmeier H, Mailander V (2006) Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials 27:2820–2828. doi:10.1016/j.biomaterials.2005.12.022

    Google Scholar 

  • Luciani N, Gazeau F, Wilhelm C (2009) Reactivity of the monocyte/macrophage system to superparamagnetic anionic nanoparticles. J Mater Chem 19:6373–6380. doi:10.1039/B903306H

    Google Scholar 

  • Martin AL, Hickey JL, Ablack AL, Lewis JD, Luyt LG, Gillies ER (2010) Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. J Nanopart Res 12:1599–1608. doi:10.1007/s11051-009-9681-3

    Article  CAS  Google Scholar 

  • Moore A, Marecos E, Bogdanov A, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574

    CAS  Google Scholar 

  • Munnier E, Cohen-Jonathan S, Herve K, Linassier C, Souce M, Dubois P, Chourpa I (2011) Doxorubicin delivered to MCF-7 cancer cells by superparamagnetic iron oxide nanoparticles: effects on subcellular distribution and cytotoxicity. J Nanopart Res 13:959–971. doi:10.1007/s11051-010-0093-1

    Google Scholar 

  • Obermajer N, Doljak B, Jamnik P, Fonović UP, Kos J (2009) Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells. Int J Biochem Cell Biol 41:1685–1696. doi:10.1016/j.biocel.2009.02.019

    Google Scholar 

  • Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H (2009) Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf B Biointerfaces 71:325–330. doi:10.1016/j.colsurfb.2009.03.004

    Google Scholar 

  • Perez-Artacho B, Gallardo V, Ruiz MA, Arias JL (2012) Maghemite/poly(D,L-lactide-co-glycolyde) composite nanoplatform for therapeutic applications. J Nanopart Res 14:768. doi:10.1007/s11051-012-0768-x

    Google Scholar 

  • Pinho SL, Pereira GA, et al. (2010) Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 4:5339–5349. doi:10.1021/nn101129r

    Google Scholar 

  • Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D (2007) Cellular interactions of lauric acid and dextran coated magnetite nanoparticles. J Magn Magn Mater 311:282–287. doi:10.1016/j.jmmm.2006.10.1181

    Google Scholar 

  • Safi M, Cuortois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32:9353–9363. doi:10.1016/j.biomaterials.2011.08.048

    Google Scholar 

  • Santos DP, Ruiz MA, Gallardo V, Zanoni MVB, Arias JL (2011) Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites. J Nanopart Res 13:4311–4323. doi:10.1007/s11051-011-0378-z

    Google Scholar 

  • Stroh A, Faber C, et al. (2005) In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24:635–645. doi:10.1016/j.neuroimage.2004.09.014

    Google Scholar 

  • Sun H, Zhang L, Zhang X, Zhang C, Wei Z, Yao S (2008) 188Re-labeled MPEG-modified superparamagnetic nanogels: Preparation and targeting application in rabbits. Biomed Microdevices 10:281–287. doi:10.1007/s10544-007-9134-7

    Google Scholar 

  • Tan IC, Brazdeikis A (2007) Novel biomagnetic sensing technique for characterization of inflammatory tissues. IEEE Trans Magn 43:2409–2411. doi:10.1109/TMAG.2007.893144

    Google Scholar 

  • Thorek DLJ, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29:3583–3590. doi:10.1016/j.biomaterials.2008.05.015

    Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. doi:10.1002/smll.200901158

    Google Scholar 

  • Wang L, Neoh KG, Kang ET, Shuter B, Wang SC (2010) Biodegradable magnetic-fluorescent magnetite/poly(dl-lactic acid-co-alpha, beta-malic acid) composite nanoparticles for stem cell labeling. Biomaterials 31:3502–3511. doi:10.1016/j.biomaterials.2010.01.081

    Google Scholar 

  • Wilhelm C, Gazeau F (2008) Universal cell labeling with anionic magnetic nanoparticles. Biomaterials 29:3161–3174. doi:10.1016/j.biomaterials.2008.04.016

    Google Scholar 

  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337. doi:10.1002/smll.201100001

    Google Scholar 

  • Zhou J, Leuschner C, Kumar C, Hormes J, Soboyejo WO (2006) A TEM study of functionalized magnetic nanoparticles targeting breast cancer cells. Mater Sci Eng C 26:1451–1455. doi:10.1016/j.msec.2005.08.027

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia within the National Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavko Kralj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kralj, S., Rojnik, M., Romih, R. et al. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. J Nanopart Res 14, 1151 (2012). https://doi.org/10.1007/s11051-012-1151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1151-7

Keywords

Navigation