Skip to main content
Log in

Platinum nanoparticles incorporated in silsesquioxane for use in LbL films for the simultaneous detection of dopamine and ascorbic acid

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We describe the preparation of platinum nanoparticles (PtNPs) using the 3-n-propylpyridinium silsesquioxane chloride (SiPy+Cl) as a nanoreactor and stabilizer. The formation of PtNPs was monitored by UV–Vis spectroscopy by measuring the decrease in the intensity of the band at 375 nm, which is attributed to the electronic absorption of PtCl6 2− ions. TEM images of Pt-SiPy+Cl nanohybrid indicated an average size of 3–40 nm for PtNPs. The Pt-SiPy+Cl was used as a polycation in the preparation of layer-by-layer films (LbL) on a glass substrate coated with fluorine-doped tin oxide (FTO) alternating with the polyanion poly(vinyl sulfonic acid) (PVS). The films were electrochemically tested in sulfuric acid to confirm the deposition of Pt-SiPy+Cl onto the LbL films, observing the adsorption and desorption of hydrogen (E pa = 0.1 V) and by the redox process of formation for PtO with E pa = 1.3 V and E pc = 0.65 V. FTIR and Raman spectra confirmed the presence of the PVS and Pt-SiPy+Cl in the LbL films. A linear increase in the absorbance in the UV–Vis spectra of the Pt-SiPy+Cl at 258 nm (π → π* transition of the pyridine groups) with a number of Pt-SiPy+Cl/PVS or PVS/SiPy+Cl bilayers (R = 0.992) was observed. These LbL films were tested for the determination of dopamine (DA) in the presence of ascorbic acid (AA) with a detection limit (DL) on the order of 2.6 × 10−6 mol L−1 and a quantification limit (QL) of 8.6 × 10−6 mol L−1. The films exhibited a good repeatability and reproducibility, providing a potential difference of 550 mV for the oxidation of DA with AA interferent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arguello J, Magosso HA, Canevari TC, Landers R (2011) Activity of SiDbCl in the electrooxidation of ascorbic acid, dopamine, and uric acid. Electroanalysis 23:334–338. doi:10.1002/elan.201000390

    Article  CAS  Google Scholar 

  • Crespilho FN, Zucolotto V, Brett CMA, Oliveira ON Jr, Nart FC (2006a) Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B 110:17478–17483. doi:10.1021/jp062098v

    Article  CAS  Google Scholar 

  • Crespilho FN, Huguenin F, Zucolotto V, Olivi P, Nart FC, Oliveira ON Jr (2006b) Dendrimers as nanoreactors to produce platinum nanoparticles embedded in layer-by-layer films for methanol-tolerant cathodes. Electrochem Commun 8:348–352. doi:10.1016/j.elecom.2005.12.003

    Article  CAS  Google Scholar 

  • Dafinone MI, Feng G, Brugarolas T, Tettey KE, Lee D (2011) Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. ACS Nano 5:5078–5087. doi:10.1021/nn201167j

    Article  CAS  Google Scholar 

  • Decher G, Lvov Y, Schmitt J (1994) Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films. Thin Solid Films 244:772–777. doi:10.1016/0040-6090(94)90569-X

    Article  CAS  Google Scholar 

  • Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman frequencies of organic compounds. Wiley-Interscience, New York

    Google Scholar 

  • Eiras C, Passos ING, Brito ACF, Santos JR, Zucolotto V, Oliveira ON Jr, Kitagawa IL, Constantino CJL, Cunha HN (2007) Nanocompósitos Eletroativos de Poli-o-metoxianilina e Polissacarídeos Naturais. Quim Nova 30:1158–1162. doi:10.1590/S0100-40422007000500020

    Article  CAS  Google Scholar 

  • Fujiwara ST, Pessoa CA, Gushikem Y (2003) Hexacyanoferrate ion adsorbed on propylpyridiniumsilsesquioxane polymer film-coated SiO2/Al2O3: use in an electrochemical oxidation study of cysteine. Electrochim Acta 48:3625–3631. doi:10.1016/S0013-4686(03)00483-3

    Article  CAS  Google Scholar 

  • Handke M, Kowalewska A (2011) Siloxane and silsesquioxane molecules—precursors for silicate materials. Spectrochimica Acta Part A 79:749–757. doi:10.1016/j.saa.2010.08.049

    Article  CAS  Google Scholar 

  • Inaba M, Ando M, Hatanaka A, Nomoto AK, Matsuzawa K, Tasaka A, Kinumoto T, Iriyama Y, Ogumi Z (2006) Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. Electrochim Acta 52:1632–1638. doi:10.1016/j.electacta.2006.03.094

    Article  CAS  Google Scholar 

  • Iost RM, Crespilho FN (2012) Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics. Biosens Bioelectron 3:1–10. doi:10.1016/j.bios.2011.10.040

    Article  Google Scholar 

  • Jesus CG, Forte CMS, Wohnrath K, Pessoa CA, Soares JES, Fujiwara ST, Neto PL, Correia AN (2011a) Electroanalytical performance of (SiPy+Cl/CuTsPc)5 LbL film for detecting promethazine hydrochloride. Electroanalysis 23:1814–1820. doi:10.1002/elan.201100202

    Article  Google Scholar 

  • Jesus CG, dos Santos V, Canestraro CD, Zucolotto V, Fujiwara ST, Gushikem Y, Wohnrath K, Pessoa CA (2011b) Silsesquioxane as a new building block material for modified electrodes fabrication and application as neurotransmitters sensors. J Nanosci Nanotechnol 11:3499–3508. doi:10.1166/jnn.2011.3733

    Article  Google Scholar 

  • Komathi S, Gopalan AI, Lee KP (2009) Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase. Biosens Bioelectron 24:3131–3134. doi:10.1016/j.bios.2009.03.013

    Article  CAS  Google Scholar 

  • Kowalewska A, Fortuniak W, Handke B (2009) New hybrid silsesquioxane materials with sterically hindered carbosilane side groups. J Organomet Chem 694:1345–1353. doi:10.1016/j.jorganchem.2008.12.027

    Article  CAS  Google Scholar 

  • Liu WC, Yang CC, Chen WC, Dai BT, Tsai MS (2002) The structural transformation and properties of spin-on poly(silsesquioxane) films by thermal curing. J Non-Cryst Solids 311:233–240. doi:10.1016/S0022-3093(02)01373-X

    Article  CAS  Google Scholar 

  • Montenegro MCBSM, Sales MGF (2000) Flow-injection analysis of dopamine in injections with a periodate-selective electrode. J Pharm Sci 89:876–884. doi:10.1002/1520-6017(200007)89:7<876:AID-JPS4>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Neela P, Jayant M, Ashok R (2009) LbL fabricated poly(styrene sulfonate)/TiO2 multilayer thin films for environmental applications. Appl Mater Interfaces 1:2684–2693. doi:10.1021/am900566n

    Article  Google Scholar 

  • Nguyen TA, Männle F, Gregersen ØW (2012) Polyethylene/octa-(ethyloctadeca-10,13 dienoamide)silsesquioxaneblends and theadhesionstrengthtopaperboard. Int J Adhes Adhes 38:117–124. doi:10.1016/j.ijadhadh.2012.05.002

    Article  CAS  Google Scholar 

  • Peng Y, Cullis T, Inkson B (2009) Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett 9:91–96. doi:10.1021/nl8025339

    Article  CAS  Google Scholar 

  • Schlicke H, Schröder JH, Trebbin M, Petrov A, Ijeh M, Weller H, Vossmeyer T (2011) Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating. Nanotechnology 22:305303–305308. doi:10.1088/0957-4484/22/30/305303

    Article  Google Scholar 

  • Shankar SS, Swamy BEK, Chandra U, Manjunatha JG, Sherigara BS (2009) Simultaneous determination of dopamine, uric acid and ascorbic acid with CTAB modified carbon paste electrode. Int J Electrochem Sci 4:592–601

    Google Scholar 

  • Šnejdárková M, Poturnayová A, Rybár P, Lhoták P, Himl M, Flídrová K, Hianik T (2010) High sensitive calixarene-based sensor for detection of dopamine by electrochemical and acoustic methods. Bioelectrochemistry 80:55–61. doi:10.1016/j.bioelechem.2010.03.006

    Article  Google Scholar 

  • Srivastava S, Ball V, Podsiadlo P, Lee J, Ho P, Kotov NA (2008) Reversible loading and unloading of nanoparticles in “exponentially” growing polyelectrolyte LBL films. J Am Chem Soc 130:3748–3749. doi:10.1021/ja7110288

    Article  CAS  Google Scholar 

  • Srivastava S, Podsiadlo P, Critchley K, Zhu J, Qin M, Shim BS, Kotov NA (2009) Single-walled carbon nanotubes spontaneous loading into exponentially grown LBL films. Chem Mater 21:4397–4400. doi:10.1021/cm900773v

    Article  CAS  Google Scholar 

  • Stoyanova A, Ivanova S, Tsakova V, Bund A (2011) Au nanoparticle–polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochim Acta 56:3693–3699. doi:10.1016/j.electacta.2010.09.054

    Article  CAS  Google Scholar 

  • Ticianelli EA, Gonzalez ER (1998) Eletroquímica. Edusp, São Paulo

    Google Scholar 

  • Wang P, Li Y, Huang X, Wang L (2007) Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta 73:431–437. doi:10.1016/j.talanta.2007.04.022

    Article  CAS  Google Scholar 

  • Ye H, Crooks RM (2005) Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. J Am Chem Soc 127:4930–4934. doi:10.1021/ja0435900

    Article  CAS  Google Scholar 

  • Zhang M, Gong K, Zhang H, Mao L (2005) Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens Bioelectron 20:1270–1276. doi:10.1016/j.bios.2004.04.018

    Article  CAS  Google Scholar 

  • Zhang W, Zhang A, Guan Y, Zhang Y, Zhu XX (2011) Silver-loading in uncrosslinked hydrogen-bonded LBL films: structure change and improved stability. J Mater Chem 21:548–555. doi:10.1039/C0JM02369H

    Article  CAS  Google Scholar 

  • Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z (2005) Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66:51–57. doi:10.1016/j.talanta.2004.09.019

    Article  CAS  Google Scholar 

  • Zhuang Z, Li J, Xu R, Xiao D (2011) Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int J Electrochem Sci 6:2149–2161

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CNPq and INEO (Brazil) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Wohnrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, V., de Jesus, C.G., dos Santos, M. et al. Platinum nanoparticles incorporated in silsesquioxane for use in LbL films for the simultaneous detection of dopamine and ascorbic acid. J Nanopart Res 14, 1081 (2012). https://doi.org/10.1007/s11051-012-1081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1081-4

Keywords

Navigation