Skip to main content
Log in

Physical and chemical properties of Co nm Cu m nanoclusters with n = 2–6 atoms via ab-initio calculations

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present ab-initio density-functional calculations of the structural, magnetic, and chemical properties of cobalt–copper clusters (1 nm in size) with two to six atoms. We applied several search methods to find the most stable configurations for all stoichiometries. Particular attention is given to the relation between the geometric and magnetic structures. The clusters behavior is basically governed by the Co–Co interaction and to a lesser extent by the Co–Cu and Cu–Cu interactions. A tendency for Co-clumping is observed. Such information is quite relevant for segregation processes found in bulk Co–Cu alloys. For a given cluster size, magnetic moments increase mostly by 2μB per Co-substitution coming from the cobalt d-states, while for some cases s-electrons give rise to itinerant magnetism. Magnetic moment results are also consistent with the ultimate jellium model because of a 2D to 3D geometrical transition. The chemical potential indicates less chemical stability with the Co atoms, while the molecular hardness can be linked mostly to the ionization potential for these small clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bagno P, Jepsen O, Gunnarsson O (1989) Ground-state properties of third-row elements with nonlocal density functionals. Phys Rev B 40:1997–2000

    Article  Google Scholar 

  • Baibich MN, Broto JM, Fert A, Nguyenvan Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472–2475

    Article  CAS  Google Scholar 

  • Bakonyi I, Simon E, Tóth BG, Péter L, Kiss LF (2009) Giant magnetoresistance in electrodeposited Co–Cu/Cu multilayers: origin of the absence of oscillatory behavior. Phys Rev B 79:174421

    Article  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–310

    Article  CAS  Google Scholar 

  • Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker FT, Hutten A, Thomas G (1992) Giant magnetoresistance in heterogeneous Cu–Co alloys. Phys Rev Lett 68:3745–3748

    Article  CAS  Google Scholar 

  • Castro M, Jamorski C, Salahub DR (1997) Structure, bonding, and magnetism of small Fe n , Co n , and Ni n clusters, n ≤ 5. Chem Phys Lett 271:133–142

    Article  CAS  Google Scholar 

  • Cezar JC, Tolentino HC, Knobel M (2003) Structural, magnetic, and transport properties of Co nanoparticles within a Cu matrix. Phys Rev B 68:054404

    Article  Google Scholar 

  • Chattaraj PK, Liu GH, Parr RG (1995) The maximum hardness principle in the Gyftopoulos–Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions. Chem Phys Lett 237:171–176

    Article  CAS  Google Scholar 

  • Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A (2007) Structure, bonding, and magnetism of cobalt clusters from first-principles calculations. Phys Rev B 76:014429

    Article  Google Scholar 

  • Dong CD, Gong XG (2008) Magnetism enhanced layer-like structure of small cobalt clusters. Phys Rev B 78:020409

    Article  Google Scholar 

  • Fan HJ, Liu CW, Liao MS (1997) Geometry, electronic structure and magnetism of small Co n (n = 2–8) clusters. Chem Phys Lett 273:353–359

    Article  CAS  Google Scholar 

  • Fan X, Mashimo T, Huang X, Kagayama T, Chiba A, Koyama K, Motokawa M (2004) Magnetic properties of Co–Cu metastable solid solution alloys. Phys Rev B 69:094432

    Article  Google Scholar 

  • Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  • Ganguly S, Kabir M, Datta S, Sanyal B, Mookerjee A (2008) Magnetism in small bimetallic Mn–Co clusters. Phys Rev B 78:014402

    Article  Google Scholar 

  • Ghanty TK, Banerjee A, Chakrabarti A (2010) Structures and the electronic properties of Au19X clusters (X = Li, Na, K, Rb, Cs, Cu, and Ag). J Phys Chem C 114:20–27

    Article  CAS  Google Scholar 

  • Ghosh SK, Grover AK, Chowdhury P, Gupta SK, Ravikumar G, Aswal DK, Senthil Kumar M, Dusane RO (2006) High magnetoresistance and low coercivity in electrodeposited Co/Cu granular multilayers. Appl Phys Lett 89:132507

    Article  Google Scholar 

  • Hales DA, Su CX, Lian L, Armentrout PB (1994) Collision-induced dissociation of Co + n (n = 2–18) with Xe: bond energies of cationic and neutral cobalt clusters, dissociation pathways, and structures. J Chem Phys 100:1049–1057

    Article  CAS  Google Scholar 

  • Hickey BJ, Howson MA, Musa SO, Wiser N (1995) Giant magnetoresistance for superparamagnetic particles: melt-spun granular CuCo. Phys Rev B 51:667–669

    Article  CAS  Google Scholar 

  • Jamorski C, Martínez A, Castro M, Salahub DR (1997) Structure and properties of cobalt clusters up to the tetramer: a density-functional study. Phys Rev B 55:10905–10921

    Article  CAS  Google Scholar 

  • Jaque P, Toro-Labbé A (2002) Characterization of copper clusters through the use of density functional theory reactivity descriptors. J Chem Phys 117:3208–3218

    Article  CAS  Google Scholar 

  • Jaque P, Toro-Labbé A (2004) The formation of neutral copper clusters from experimental binding energies and reactivity descriptors. J Phys Chem B 108:2568–2574

    Article  CAS  Google Scholar 

  • Ju SP, Lo YC, Sun SJ, Chang JG (2005) Investigation on the structural variation of CoCu nanoparticles during the annealing process. J Phys Chem B 109:20805–20809

    Article  CAS  Google Scholar 

  • Kabir M, Mookerjee A, Bhattacharya AK (2004a) Copper clusters: electronic effect dominates over geometric effect. Eur Phys J D 31:477–485

    Article  CAS  Google Scholar 

  • Kabir M, Mookerjee A, Bhattacharya AK (2004b) Structure and stability of copper clusters: a tight-binding molecular dynamics study. Phys Rev A 69:043203

    Article  Google Scholar 

  • Knorr N, Schneider MA, Diekhöner L, Wahl P, Kern K (2002) Kondo effect of single Co adatoms on Cu surfaces. Phys Rev Lett 88:096804

    Article  Google Scholar 

  • Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  • Kolehmainen J, Häkkinen H, Manninen M (1997) Metal clusters on an inert surface: a simple mode. Z Phys D 40:306–309

    Article  CAS  Google Scholar 

  • Koskinen M, Lipas PO, Manninen M (1995) Electron-gas clusters: the ultimate jellium model. Z Phys D 35:285–297

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6:15–50

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  • Kresse G, Hafner J (1993) Ab-initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  • Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements. J Phys Condens Matter 6:8245–8257

    Article  CAS  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  • Kübbler J (1981) Magnetic moments of ferromagnetic and antiferromagnetic bcc and fcc iron. Phys Lett A 81:81–83

    Article  Google Scholar 

  • Kullie O, Zhang H, Kolb D (2008) Relativistic and non-relativistic local-density functional, benchmark results and investigation on the dimers Cu2, Ag2, Au2, Rg2. Chem Phys 351:106–110

    Article  CAS  Google Scholar 

  • Leopold DG, Lineberger WC (1986) A study of the low-lying electronic states of Fe2 and Co2 by negative ion photoelectron spectroscopy. J Chem Phys 85:51–55

    Article  CAS  Google Scholar 

  • Lu QL, Zhu LZ, Ma L, Wang GH (2005) Magnetic properties of Co/Cu and Co/Pt bimetallic clusters. Chem Phys Lett 407:176–179

    Article  CAS  Google Scholar 

  • Mejía-López J, García G, Romero AH (2009) Physical and chemical characterization of Pt12−n Cu n clusters via ab-initio calculations. J Chem Phys 131:044701

    Article  Google Scholar 

  • Miranda MGM, Estévez-Rams E, Martínez G, Baibich MN (2003) Phase separation in Cu90Co10 high-magnetoresistance materials. Phys Rev B 68:014434

    Article  Google Scholar 

  • Miranda MGM, da Rosa AT, Hinrichs R, Golla-Schindler U, Antunes AB, Martínez G, Estévez-Rams E, Baibich MN (2006) Spinodal decomposition and giant magnetoresistance. Phys B 384:175–178

    Article  CAS  Google Scholar 

  • Néel N, Kröger J, Berndt R, Wehling TO, Lichtenstein AI, Katsnelson MI (2008) Controlling the Kondo effect in CoCu n clusters atom by atom. Phys Rev Lett 101:266803

    Article  Google Scholar 

  • Parkin SSP, More N, Roche KP (1990) Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett 64:2304–2307

    Article  CAS  Google Scholar 

  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  • Parr RG, Yang M (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  • Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    Article  Google Scholar 

  • Perdew JP, Wang Y (1986) Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 33:8800–8802

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996a) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Wang Y (1996b) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  • Quaas N, Wenderoth NM, Weismann A, Ulbrich RG, Schönhammer K (2004) Kondo resonance of single Co atoms embedded in Cu(111). Phys Rev B 69:201103

    Article  Google Scholar 

  • Rabedeau TA, Toney MF, Marks RF, Parkin SSP, Farrow RFC, Harp GR (1993) Giant magnetoresistance and Co-cluster structure in phase-separated Co–Cu granular alloys. Phys Rev B 48:16810–16813

    Article  CAS  Google Scholar 

  • Rastei MV, Heinrich B, Limot L, Ignatiev PA, Stepanyuk VS, Bruno P, Bucher JP (2007) Size-dependent surface states of strained cobalt nanoislands on Cu(111). Phys Rev Lett 99:246102

    Article  CAS  Google Scholar 

  • Rogan J, Ramírez M, Muñoz V, Valdivia JA, García G, Ramírez R, Kiwi M (2009) Diversity driven unbiased search of minimum energy cluster configurations. J Phys Condens Matter 21:084209

    Article  Google Scholar 

  • Rohlfing EA, Valentini JJ (1986) UV laser excited fluorescence spectroscopy of the jet-cooled copper dimer. J Chem Phys 84:6560–6566

    Article  CAS  Google Scholar 

  • Wang F, Liu W (2005) Benchmark four-component relativistic density functional calculations on Cu2, Ag2, and Au2. Chem Phys 311:63–69

    Article  CAS  Google Scholar 

  • Wang CS, Klein BM, Krakauer H (1985) Theory of magnetic and structural ordering in iron. Phys Rev Lett 54:1852–1855

    Article  CAS  Google Scholar 

  • Wang JL, Wang G, Chen X, Lu W, Zhao J (2002) Structure and magnetic properties of Co–Cu bimetallic clusters. Phys Rev B 66:014419

    Article  Google Scholar 

  • Wang H, Khait YG, Hoffmann MR (2005) Low-lying quintet states of the cobalt dimer. Mol Phys 103:263–268

    Article  CAS  Google Scholar 

  • Xiao JQ, Jiang JS, Chien CL (1992) Giant magnetoresistance in nonmultilayer magnetic systems. Phys Rev Lett 68:3749–3752

    Article  CAS  Google Scholar 

  • Yang M, Jackson KA, Koehler C, Frauenheim T, Jellinek J (2006) Structure and shape variations in intermediate-size copper clusters. J Chem Phys 124:024308

    Article  Google Scholar 

  • Zimmermann CG, Yeadon M, Nordlund K, Gibson JM, Averback RS, Herr U, Samwer K (1999) Burrowing of Co nanoparticles on clean Cu and Ag surfaces. Phys Rev Lett 83:1163–1166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this study from CNPq (Brasil) and CONICYT (Chile), Joint Project CIAM 490891/2008-0 is gratefully acknowledged. We also thank the Millennium Science Nucleus (Chile), Project P10-061-F; Doctorate Program PUC (Chile), Project 06/2009; FONDECYT (Chile), Project 1100365; and CAPES/PROCAD (Brasil) Project 059/2007. Computer time from the National Supercomputing Center CENAPAD CESUP/UFRGS is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, M., Muñoz, F., Mejía-López, J. et al. Physical and chemical properties of Co nm Cu m nanoclusters with n = 2–6 atoms via ab-initio calculations. J Nanopart Res 14, 933 (2012). https://doi.org/10.1007/s11051-012-0933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0933-2

Keywords

Navigation