Skip to main content
Log in

Pulsed KrF-laser synthesis of single-wall-carbon-nanotubes: effects of catalyst content and furnace temperature on their nanostructure and photoluminescence properties

  • Special Issue: Nanostructured Materials 2010
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, we report on the use of a pulsed KrF-laser (248 nm, 20 ns) for the synthesis of single wall carbon nanotubes (SWCNTs) from the ablation of a graphite target loaded with Co/Ni catalyst, under various growth conditions. By varying the Co/Ni catalyst load of the graphite target, from 0 to 2.4 at.%, the laser synthesized SWCNTs, under a furnace temperature (T f) of 1,100 °C, were found to be decorated by C60 buckyballs, of which the density decreases as the catalyst content is increased. The effect of the catalyst content of the laser-ablated graphite target on the produced carbon nanostructures (C60 vs. SWCNTs) was systematically investigated by means of various characterization techniques, including Raman spectroscopy, thermogravimetry, and SEM/HR-TEM microscopies. A [Co/Ni] ≥ 1.2 at.% was identified as the optimal concentration for the production of SWCNTs without any detectable presence of C60 buckyballs. Thus, under the optimal growth conditions (i.e., [Co/Ni] = 1.2 at.% and T f = 1,100 °C), the produced SWCNTs were found to be characterized by a very narrow diameter distribution (centered on 1.2 nm) with lengths in excess of 10 μm. By increasing T f from 900 to 1,150 °C, the diameter of the SWCNTs can be varied from ~0.9 to ~1.3 nm. This nanotube diameter variation was evidenced by Raman and UV–Vis absorption measurements, and its effect on the photoluminescence of the SWCNTs is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aïssa B, El Khakani MA (2009) The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotubes based field effect transistors. Nanotechnology 20:175203

    Article  Google Scholar 

  • Bachilo S, Strano S, Kittrel C, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon. Nanotub Sci 298:2361

    CAS  Google Scholar 

  • Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E, Eklund PC (1998) Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys Rev Lett 80:3779–3782

    Article  CAS  Google Scholar 

  • Braidy N, El Khakani MA, Botton GA (2002) Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem Phys Lett 354:88–92

    Article  CAS  Google Scholar 

  • Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72:3282

    Article  CAS  Google Scholar 

  • Dillon AC, Gennett T, Jones KM, Alleman J, Parilla PA, Heben MJ (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv Mat 11:1354

    Article  CAS  Google Scholar 

  • Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    Article  CAS  Google Scholar 

  • El Khakani MA, Yi JH (2004) Nanostructure and electrical properties of SWNT bundle networks grown by an “all-laser” growth process for nanoelectronic device applications. Nanotechnology 15:S524–S539

    Google Scholar 

  • El Khakani MA, Le Borgne V, Aissa B, Rosei F, Scilletta C, Speiser E, Scarselli M, Castrucci P, De Crescenzi M (2009) Photocurrent generation in random networks of multiwall-carbon nanotubes grown by an “all-laser” process. Appl Phys Lett 95:083114

    Article  Google Scholar 

  • Geohegan DB, Puretzky AA, Styers-Barnett D, Hu H, Zhao B, Cui H, Rouleau CM, Eres G, Jackson JJ, Wood RF, Pannala S, Wells JC (2007) In situ time-resolved measurements of carbon nanotube and nanohorn growth. Phys Stat Solidif B 248:3944–3949

    Article  Google Scholar 

  • Guha S, Ménendez J, PageJ B, Adams GB (1997) Isotope effect on the Raman spectrum of the pentagonal-pinch mode in C60. Phys Rev B 56:15431

    Article  CAS  Google Scholar 

  • Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49

    Article  CAS  Google Scholar 

  • Irle S, Zheng G, Zhi Wang, Morokuma K (2006) The C60 formation puzzle “solved”: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J Phys Chem B 110:14531–14545

    Article  CAS  Google Scholar 

  • Itkis M, Perea DE, Jung R, Niyogi S, Haddon RC (2005) Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J Am Chem Soc 127:3439–3448

    Article  CAS  Google Scholar 

  • Kokai F, Takahashi F, Yudasaka M, Yamada T, Ichihashi T, Iijima S (1999) Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization. J Phys Chem B 103:4346–4351

    Article  CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien RF, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  • Kusaba M, Tsunawaki Y (2006) Production of single-wall carbon nanotubes by a XeCl excimer laser ablation. Thin Solid Films 506:255

    Article  Google Scholar 

  • Maser WK, Muñoz E, Benito AM, Martínez MT, De La Fuente GF, Maniette Y, Anglaret E, Sauvajol J-L (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phy Lett 292(4–6):587–593

    Article  CAS  Google Scholar 

  • Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review plasma sources. Sci Technol 12:205–216

    CAS  Google Scholar 

  • Ohta Y, Okamoto Y, Irle S, Morokuma K (2008) Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations. ACS Nano 2:1437–1444

    Article  CAS  Google Scholar 

  • Radhakrishnan G, Adams PM, Beinstein LS (2007) Plasma characterization and room temperature growth of carbon nanotubes and nano-onions by excimer laser ablation. Appl Surf Sci 253:7651–7655

    Article  CAS  Google Scholar 

  • Rümmeli MH, Schäffel F, Löffler M, Kramberger C, Adebimpe D, Gemming T, Ayala P, Rellinghaus B, Schultz L, Büchner B, Pichler T (2008) Unifying catalyst size dependencies in floating catalyst and supported catalyst carbon nanotube synthesis. Phys Stat Solidif A 205:1386–1390

    Article  Google Scholar 

  • Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee C, Kim C, Rinzler A, Colbert D, Scuseria G, Tománek D, Fischer J, Smalley R (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483

    Article  CAS  Google Scholar 

  • Yoshihara N, Ago H, Masaharu T (2007) Chemistry of water-assisted carbon nanotube growth over Fe–Mo/MgO catalyst. J Phys Chem C 111:11577–11582

    Article  CAS  Google Scholar 

  • Yudasaka M, Ichihashi T, Komatsu T, Iijima S (1999) Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd: YAG laser ablation. Chem Phys Lett 299:91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. El Khakani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Borgne, V., Aïssa, B., Mohamedi, M. et al. Pulsed KrF-laser synthesis of single-wall-carbon-nanotubes: effects of catalyst content and furnace temperature on their nanostructure and photoluminescence properties. J Nanopart Res 13, 5759–5767 (2011). https://doi.org/10.1007/s11051-011-0409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0409-9

Keywords

Navigation