Skip to main content
Log in

Elaboration and characterization of bimetallic nanoparticles obtained by laser ablation of Ni75Pd25 and Au75Ag25 targets in water

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

An Erratum to this article was published on 22 June 2010

Abstract

A YAG laser operating at the second harmonic wavelength (532 nm, 10 Hz, 8 ns and 40 mJ) was used to elaborate bimetallic nanoparticles by laser ablation of Ni75Pd25 and Au75Ag25 targets in water. TEM–EDX, UV–Vis spectroscopy and PIXE measurements were performed to obtain information on their mean sizes, size distributions and chemical composition as a function of the time of laser ablation. The surface of the laser impacted regions of the targets were characterized by RBS in order to check their composition after the laser ablation. The so-obtained bimetallic nanoparticles always show a homogeneous composition. However, while the composition of Au–Ag nanoparticles was found to be very similar to the one of the alloy target, the composition of the Ni–Pd nanoparticles can be different from the nominal composition of the alloy target. Segregation phenomena can be invoked to explain the difference between the Ni–Pd nanoparticles and the Au–Ag nanoparticles compositions obtained in the same conditions. However, an influence of chemical reactions occurring in the high pressure plasma created locally at liquid–solid interface (called ‘reactive quenching’) cannot be completely ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bertolini JC, Massardier J et al (1982) Pt10Ni90(111) single crystal alloy: determination of the surface composition by AES, XPS and ISS. Surf Sci 119:95–106Ze

    Article  CAS  ADS  Google Scholar 

  • Borisov OV, Mao XL et al (1999) Inductively coupled plasma mass spectrometric study of non-linear calibration behaviour during laser ablation of binary Cu–Zn Alloys. Spectrochim Acta B 54:1351–1365

    Article  ADS  Google Scholar 

  • Bozzolo G, Garcés JE et al (2007) Atomistic modelling of segregation and bulk ordering in Ag–Au alloys. Surf Sci 601:2038–2046

    Article  CAS  ADS  Google Scholar 

  • Cadete Santos Aires FJ, Sautet P et al (1993) Model catalysts obtained by cluster deposition of Palladium onto HOPG : TEM and STM characterization. Microsc Microanal Microstruct 4:441–452

    Google Scholar 

  • Cadete Santos Aires FJ, Sautet P et al (1994) Scanning tunneling microscopy study of model catalysts by cluster beam deposition of Palladium onto highly oriented pyrolithic graphite. J Vac Sci Technol B 12:1776–1779

    Google Scholar 

  • Che M, Bennett CO (1989) The influence of particle size on the catalytic properties of supported metals. Adv Catal 36:55–172

    Article  CAS  Google Scholar 

  • Chen YH, Yeh CS (2001) A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixtures. Chem Commun 371–372

  • Compagnini G, Messina E et al (2007) Laser synthesis of Au/Ag colloids nano-alloys: optical properties, structure and composition. Appl Surf Sci 254:1007–1011

    Article  CAS  ADS  Google Scholar 

  • Creighton JA, Desmond GE (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87:3881–3891

    Article  CAS  Google Scholar 

  • Derry GN, McVey CB et al (1995) The surface structure and segregation profile of Ni50Pd50(100): a dynamical LEED study. Surf Sci 326:59–66

    Article  CAS  ADS  Google Scholar 

  • Elghanian R, Storhoff JJ et al (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed IH, Huang X et al (2006) Selective laser photothermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135

    Article  CAS  PubMed  Google Scholar 

  • Fojtik A, Henglein A (1993) Laser vaporization of films and suspended particles in a solvent: formation of cluster and colloid solutions. Ber Bunsen Ges Phys Chem 97:252–254

    CAS  Google Scholar 

  • Fuchs G, Treilleux M et al (1989) Cluster-beam deposition for high quality thin films. Phys Rev A 40:6128–6129

    Google Scholar 

  • Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21:1361–1367

    Article  CAS  PubMed  Google Scholar 

  • Haberland H (1993) Clusters of atoms and molecules. Springer series in chemical physics, vol 52, 56. Springer, New York

    Google Scholar 

  • Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166

    Article  CAS  Google Scholar 

  • Helfensteyn S, Luyten J et al (2003) Modelling surface phenomena in Pd–Ni alloys. Appl Surf Sci 212–213:844–849

    Article  Google Scholar 

  • Hwang C-B, Fu Y-S et al (2000) Synthesis, characterization, and highly efficient catalytic reactivity of suspended palladium nanoparticles. J Catal 195:336–341

    Article  CAS  Google Scholar 

  • Ishikawa Y, Kawaguchi K et al (2006) Preparation of Fe–Pt alloy particles by pulsed laser ablation in liquid medium. Chem Phys Lett 428:426–429

    Article  CAS  ADS  Google Scholar 

  • Izgaliev AT, Simakin AV et al (2004) Intermediate phase upon alloying Au–Ag nanoparticles under laser exposure of the mixture of individual colloids. Chem Phys Lett 390:467–471

    Article  CAS  ADS  Google Scholar 

  • Jain PK, El-Sayed IH et al (2007) Au nanoparticles target cancer. Nano Today 2:18–29

    Article  Google Scholar 

  • Khan SZ, Yuan Y et al (2009) Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid. J Nanopart Res 11:1421–1427

    Article  CAS  Google Scholar 

  • Kim S, Yoo BK et al (2005) Catalytic effect of laser ablated nanoparticles in the oxidative addition reaction for coupling reagent of benzylchloride and bromoacetonitrile. J Mol Catal 226:231–234

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  • Kruusing A (2004a) Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing. Opt Lasers Eng 41:307–327

    Article  Google Scholar 

  • Kruusing A (2004b) Underwater and water-assisted laser processing: part 2—etching, cutting and rarely used methods. Opt Lasers Eng 41:329–352

    Article  Google Scholar 

  • Lee I, Han SW et al (2001) Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun 1782–1783

  • Mafuné F, Kohno J-y et al (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120

    Article  Google Scholar 

  • Mahfouz R (2008) Elaboration de nanoparticules par ablation laser de cibles métalliques en milieu liquide et application en catalyse, PhD thesis, Université Claude Bernard Lyon I

  • Mahfouz R, Cadete Santos Aires FJ et al (2008) Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl Surf Sci 254:5181–5190

    Article  CAS  ADS  Google Scholar 

  • Michel AC, Lianos L et al (1998) Surface characterization and reactivity of Pd8Ni92 (111) and (110) alloys. Surf Sci 416:288–294

    Article  CAS  ADS  Google Scholar 

  • Miegge P, Rousset JL et al (1994) Pd1Ni99 and Pd5Ni95: surface segregation and reactivity for the hydrogenation of 1, 3-butadiene. J Catal 149:404–413

    Article  CAS  Google Scholar 

  • Nelson GC (1976) Determination of the surface versus bulk composition of silver–gold alloys by low energy ion scattering spectroscopy. Surf Sci 59:310–314

    Article  CAS  ADS  Google Scholar 

  • Nichols WT, Sasaki T et al (2006) Laser ablation of a platinum target in water. III. Laser induced reactions. J Appl Phys 100:114913-1-7

    ADS  Google Scholar 

  • Papavassiliou GC (1976) Surface plasmons in small Au–Ag alloy particles. J Phys F 6:103–105

    Article  ADS  Google Scholar 

  • Patil PP, Phase DM et al (1987) Pulsed-laser-induced reactive quenching at a liquid–solid interface: aqueous oxidation of iron. Phys Rev Lett 58:238–241

    Article  CAS  ADS  PubMed  Google Scholar 

  • Rodríguez-Fernández J, Pérez-Juste J et al (2006) Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22:7007–7010

    Article  PubMed  Google Scholar 

  • Roumié M, Nsouli B et al (2004) First accelerator based ion beam analysis facility in Lebanon: development and applications. Nucl Instrum Methods B 219–220:389–393

    Article  Google Scholar 

  • Rousset JL, Bertolini JC et al (1996) Theory of segregation using the equivalent-medium approximation and bond-strength modifications at surfaces: application to fcc Pd-X alloys. Phys Rev B 53:4947–4957

    Article  CAS  ADS  Google Scholar 

  • Rousset JL, Cadete Santos Aires FJ et al (2000a) Characterization and reactivity of Pd–Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy. Appl Surf Sci 164:163–168

  • Rousset JL, Cadete Santos Aires FJ et al (2000b) Comparative X-ray photoemission spectroscopy study of Au, Ni, and AuNi clusters produced by laser vaporization of bulk metals. J Phys Chem B 104:5430–5435

  • Sachtler WMH (1984) Selectivity and rate of activity decline of bimetallic catalysts. J Mol Catal 25:1–12

    Article  CAS  Google Scholar 

  • Sakka T, Wanaga S et al (2000) Laser ablation at solid–liquid interfaces: an approach from optical emission spectra. J Chem Phys 112:8645–8653

    Article  CAS  ADS  Google Scholar 

  • Santos Aires F, Treilleux M et al (1989) Size distribution of Bi cluster deposits on amorphous-carbon substrates, Zeitschrift für Physik D-Atoms. Mol Clust 12:149–152

    Google Scholar 

  • Sasaki T, Shimizu Y et al (2006) Preparation of metal-oxide based nanomaterials using nanosecond pulsed laser ablation in liquids. J Photochem Photobiol A 182:335–341

    Article  CAS  Google Scholar 

  • Sibbald MS, Chumanov G et al (1996) Reduction of cytochrome c by halide-modified, laser-ablated silver colloids. J Phys Chem 100:4672–4678

    Article  CAS  Google Scholar 

  • Simakin AV, Voronov VV et al (2001) Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem Phys Lett 348:182–186

    Article  CAS  ADS  Google Scholar 

  • Sinfelt JH (1983) Bimetallic catalysis. Wiley, New-York

    Google Scholar 

  • Tarasenko NV, Butsen AV et al (2006) Synthesis of nanosized particles during laser ablation of gold in water. Appl Surf Sci 25:4439–4444

    Article  ADS  Google Scholar 

  • Teghil R, D’Alessio L et al (2000) Pulsed laser ablation of Al–Cu–Fe quasicrystals. Appl Surf Sci 168:267–269

    Article  CAS  ADS  Google Scholar 

  • Teghil R, De Bonis A et al (2007) Role and importance of nanoparticles in femtosecond pulsed laser ablation deposition of Al–Cu–Fe quasicrystal. Chem Phys Lett 438:85–88

    Article  CAS  ADS  Google Scholar 

  • Toshima N, Wang Y (1993) Novel preparation, characterization and catalytic properties of polymer-protected Cu/Pd bimetallic colloid. Chem Lett 9:1611–1614

    Article  Google Scholar 

  • Toshima N, Harada M et al (1992) Catalytic activity and structural analysis of polymer-protected Au–Pd bimetallic cluster prepared by the simultaneous reduction of HAuCl4 and PdCl2. J Phys Chem 96:9927–9933

    Article  CAS  Google Scholar 

  • Trelenberg TW, Dinh LN et al (2004) Femtosecond pulsed laser ablation of metal alloy and semiconductor targets. Appl Surf Sci 229:268–274

    Article  CAS  ADS  Google Scholar 

  • Usui H, Shimizu Y et al (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Chem Phys B 109:120–124

    Article  CAS  Google Scholar 

  • Valden M, Lay X et al (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  ADS  PubMed  Google Scholar 

  • Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698

    Article  CAS  Google Scholar 

  • Zeng H, Cai W et al (2005) Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J Chem Phys B 109:8260–8266

    Google Scholar 

  • Zhang J, Lan CQ (2008) Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution. Mater Lett 62:1521–1524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Cadete Santos Aires.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11051-010-9984-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahfouz, R., Cadete Santos Aires, F.J., Brenier, A. et al. Elaboration and characterization of bimetallic nanoparticles obtained by laser ablation of Ni75Pd25 and Au75Ag25 targets in water. J Nanopart Res 12, 3123–3136 (2010). https://doi.org/10.1007/s11051-010-9949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9949-7

Keywords

Navigation