Skip to main content
Log in

Nanoparticles size effects in thermoluminescence of oxyfluoride glass-ceramics containing Sm3+-doped CaF2 nanocrystals

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Oxyfluoride glass-ceramic in the system SiO2–Al2O3–CaF2–SmF3 containing Sm3+-doped CaF2 nanocrystals in the range from 15 to 150 nm size were produced by using the controlled ceramization of the precursor glass. The incorporation of the Sm3+-dopant ion in the glass ceramic creates new electron-trapping centers and thermoluminescence (TL) method has been used in order to trace their evolution during glass ceramization. The 370 °C TL peak observed in precursor glass has been assigned to the recombination of the electrons released from the Sm2+-traps in the amorphous glass network. In the glass-ceramic sample containing nanocrystals with about 15 nm size the new weak TL peaks at 270, 290, and 310 °C were attributed to the recombination of the electrons released from the Sm2+-traps located mainly at the surface of the CaF2 nanocrystals. In the glass-ceramic sample containing nanocrystals with about 150 nm size, the new TL peaks at 232, 270, and 302 °C size have been assigned to the recombination of the electrons released from the Sm2+-traps located inside the CaF2 nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldica G, Secu M (2010) Investigations of the non-isothermal crystallization of CaF2 nanoparticles in Sm-doped oxy-fluoride glasses. J Non Cryst Solids 356:1631–1636

    Article  CAS  Google Scholar 

  • Dorenbos P, Bos AJJ (2008) Lanthanide level location and related thermoluminescence phenomena. Radiat Meas 43:139–145

    Article  CAS  Google Scholar 

  • Edgar A, Williams GVM, Hamlin J, Secu M, Schweizer S, Spaeth J-M (2004) New materials for glass-ceramic X-ray storage phosphors. Curr Appl Phys 4:193–196

    Article  Google Scholar 

  • George BH, Pinckney LR (1999) Nanophase glass-ceramics. J Am Ceram Soc 82:5–16

    Google Scholar 

  • Kirsh Y (1992) Kinetic analysis of thermoluminescence. Phys Stat Sol a 129:15–48

    Article  CAS  Google Scholar 

  • Kortov VS (2010) Nanophosphors and outlooks for their use in ionizing radiation detection. Radiat Meas 45:512–515

    Article  CAS  Google Scholar 

  • Kortov VS, Ermakov AE, Zatsepin AF, Nikiforov SV (2008) Luminescence properties of nanostructured alumina ceramic. Radiat Meas 43(2–6):341–344

    Article  CAS  Google Scholar 

  • McKeever SWS (1985) Thermoluminescence of Solids. Cambridge University Press, Cambridge

    Google Scholar 

  • Mendoza-Anaya D, Angeles C, Salas P, Rodriguez R, Castano VM (2003) Nanoparticle-enhanced thermoluminescence in silica gels. Nanotechnology 14(12):L19–L22

    Article  CAS  Google Scholar 

  • Mizushima K, Tanaka M, Asai A, Iida S, Goodenough J (1979) Impurity levels of iron-group ions in TiO2(II). J Phys Chem Solids 40:1129–1140

    Article  CAS  Google Scholar 

  • Nogami M, Hagiwara T, Kawamura G, Ghaith E-S, Hayakawa T (2007) Redox equilibrium of samarium ions doped Al2O3–SiO2 glasses. J Lumin 124:291–296

    Article  CAS  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  • Polosan S, Secu CE (2008) Optical properties of CaF2: Eu3+ nanocrystals embedded in transparent oxyfluoride glass ceramic. J Optoelectron Adv Mater 10(8):2134–2137

    CAS  Google Scholar 

  • Salah N, Sahare PD, Lochab SP, Kumar P (2006) TL and PL studies on CaSO4: Dy Nanoparticles. Radiat Meas 41:40–47

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren von Kolloidteilchen mittels Röntgenstrahlen Struktur Nachr. Ges Wiss Göttingen 26:98–100

    Google Scholar 

  • Secu CE, Sima M (2009) Photoluminescence and thermoluminescence of ZnO nano-needle arrays and films. Opt Mater 31:876–880

    Google Scholar 

  • Secu M, Secu CE, Polosan S, Aldica G, Ghica C (2009) Crystallization and spectroscopic properties of Eu-doped CaF2 nanocrystals in transparent oxyfluoride glass-ceramics. J Non Cryst Solids 355:1869–1872

    Article  CAS  Google Scholar 

  • Shinsho K, Harada K, Yamamoto Y, Urushiyama A (2008) Differences in glow curves structure of nano-and microcrystals of CaSO4: Dy measure data low heating rate. Radiat Meas 43:236–240

    Article  CAS  Google Scholar 

  • Suzdalev IP (2005) Physics and Chemie of Nanoclusters. Nanostructures and Nanomaterials. Comkniga, Moscow

    Google Scholar 

  • Van Deun R, Binnemans K, Görller-Walrand C, Adam JL (1999) Spectroscopic properties of trivalent samarium ions in glasses. Proc SPIE 3622:175–181

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledge the Romanian Research Ministry (“Core Program no. PN09-450102”) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Secu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Secu, M. Nanoparticles size effects in thermoluminescence of oxyfluoride glass-ceramics containing Sm3+-doped CaF2 nanocrystals. J Nanopart Res 13, 2727–2732 (2011). https://doi.org/10.1007/s11051-010-0181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0181-2

Keywords

Navigation