Skip to main content
Log in

Synthesis of MgAl2O4 spinel nanoparticles using a mixture of bayerite and magnesium sulfate

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This article reports a novel method to prepare MgAl2O4 spinel nanoparticles. By calcining a powder mixture of bayerite and magnesium sulfate at 800 °C and washing with water, single-phase MgAl2O4 spinel nanoparticles were prepared. The powder mixture and the calcined products were characterized by differential thermal and thermogravimetric analysis (DSC-TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) nitrogen-gas adsorption method. The obtained MgAl2O4 spinel nanoparticles have an average particle size of 12 nm, a narrow size distribution, and weak agglomeration. The specific surface area of the MgAl2O4 spinel powder is 110 m2/g. The formation of MgAl2O4 spinel is attributed to a solid-state reaction between γ-Al2O3 and MgSO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alinejad B, Sarpoolaky H, Beitollahi A, Saberi A, Afshar S (2008) Synthesis and characterization of nanocrystalline MgAl2O4 spinel via sucrose process. Mater Res Bull 43:1188–1194

    Article  CAS  Google Scholar 

  • Bickmore CR, Waldner KF, Treadwell DR, Laine RM (1996) Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminium double alkoxides. J Am Ceram Soc 79:1419–1423

    Article  CAS  Google Scholar 

  • Bratton RJ (1969) Coprecipitates yielding MgAl2O4 spinel powders. Am Ceram Soc Bull 48:759–762

    CAS  Google Scholar 

  • Bratton RJ (1971) Sintering and grain-growth kinetics of MgAl2O4. J Am Ceram Soc 54:141–143

    Article  CAS  Google Scholar 

  • Delau JGM (1970) Preparation of ceramic powders from sulfate solution by spray drying and roasting. Am Ceram Soc Bull 49:572–574

    CAS  Google Scholar 

  • Domanski D, Urretavizcaya G, Castro FJ, Gennari FC (2004) Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature. J Am Ceram Soc 87:2020–2024

    Article  CAS  Google Scholar 

  • Du X, Su X, Wang Y, Li J (2009) Thermal decomposition of grinding activated bayerite. Mater Res Bull 44:660–665

    Article  CAS  Google Scholar 

  • Ianoş R, Lazău R (2009) Combustion synthesis, characterization and sintering behavior of magnesium aluminate (MgAl2O4) powders. Mater Chem Phys 115:645–648

    Article  CAS  Google Scholar 

  • Katanić-Popović J, Miljević N, Zec S (1991) Spinel formation from coprecipitated gel. Ceram Int 17:49–52

    Article  Google Scholar 

  • Kim W, Saito F (2000) Effect of grinding on synthesis of MgAl2O4 spinel from a powder mixture of Mg(OH)2 and Al(OH)3. Powder Technol 113:109–113

    Article  CAS  Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedure for polycrystalline and amorphous materials, 2nd edn. Wiley, New York, p 634

    Google Scholar 

  • Kong LB, Ma J, Huang H (2002) MgAl2O4 spinel phase derived from oxide mixture activated by a high-energy ball milling process. Mater Lett 56:238–243

    CAS  Google Scholar 

  • Lee PY, Suematsu H, Yano T, Yatsui K (2006) Synthesis and characterization of nanocrystalline MgAl2O4 spinel by polymerized complex method. J Nanopart Res 8:911–917

    Article  CAS  Google Scholar 

  • Lepkova D, Batarjav A, Samuneva B, Ivanova Y, Georgieva L (1991) Preparation and properties of ceramics from magnesium spinel by sol–gel technology. J Mater Sci 26:4861–4864

    Article  CAS  ADS  Google Scholar 

  • Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012

    CAS  Google Scholar 

  • Li JG, Sun XD (2000) Synthesis and sintering behavior of a nanocrystalline α-alumina powder. Acta Mater 48:3103–3112

    Article  CAS  Google Scholar 

  • Li J-G, Ikegami T, Lee J-H, Mori T, Yajima Y (2001a) A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder. Ceram Int 27:481–489

    Article  CAS  Google Scholar 

  • Li J-G, Ikegami T, Lee J-H, Mori T, Yajima Y (2001b) Synthesis of Mg–Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. J Eur Ceram Soc 21:139–148

    Article  CAS  Google Scholar 

  • Li G, Sun Z, Chen C, Cui X, Ren R (2007) Synthesis of nanocrystalline MgAl2O4 spinel powders by a novel chemical method. Mater Lett 61:3585–3588

    Article  CAS  Google Scholar 

  • MacKenzie KJD, Temuujin J, Jadambaa T, Smith ME, Angerer P (2000) Mechanochemical synthesis and sintering behavior of magnesium aluminate spinel. J Mater Sci 35:5529–5535

    Article  CAS  Google Scholar 

  • Perry DL, Phillips SL (1995) Handbook of inorganic compounds: Version 2.0. CRC press, Florida, p 245

    Google Scholar 

  • Plešingerová B, Števulová N, Luxová M, Boldižárová E (2000) Mechanochemical synthesis of magnesium aluminate spinel in oxide-hydroxide systems. J Mater Synth Process 8:287–293

    Article  Google Scholar 

  • Prabhakaran K, Patil DS, Dayal R, Gokhale NM, Sharma SC (2009) Synthesis of nanocrystalline magnesium aluminate (MgAl2O4) spinel powder by the urea–formaldehyde polymer gel combustion route. Mater Res Bull 44:613–618

    Article  CAS  Google Scholar 

  • Ryskhewitch E (1960) Oxide ceramics. Academic Press, New York, p 271

    Google Scholar 

  • Saberi A, Golestani-Fard F, Willert-Porada M, Negahdari Z, Liebscher C, Gossler B (2009) A novel approach to synthesis of nanosize MgAl2O4 spinel powder through sol–gel citrate technique and subsequent heat treatment. Ceram Int 35:933–937

    Article  CAS  Google Scholar 

  • Shiono T, Shiono K, Miyamoto K, Pezzotti G (2000) Synthesis and characterization of (MgAl2O4) spinel precursor from a heterogeneous alkoxide solution containing fine MgO powder. J Am Ceram Soc 83:235–237

    Article  CAS  Google Scholar 

  • Urretavizcaya G, Cavalieri AL, Porto López JM, Sobrados I, Sanz J (1998) Thermal evolution of alumina prepared by the sol–gel technique. J Mater Synth Proc 6:1–7

    Article  CAS  Google Scholar 

  • Wang CT, Lin LS, Yang SJ (1992) Preparation of MgAl2O4 spinel powders via freeze-drying of alkoxide precursors. J Am Ceram Soc 75:2240–2243

    Article  CAS  Google Scholar 

  • Ye G, Oprea G, Troczynski T (2005) Synthesis of MgAl2O4 spinel powder by combination of sol–gel and precipitation processes. J Am Ceram Soc 88:3241–3244

    Article  CAS  Google Scholar 

  • Yoshikawa Y, Tsuzuki K (1992) Fabrication of transparent lead lanthanum zirconate titanate ceramics from fine powders by two stage sintering. J Am Ceram Soc 75:2520–2528

    Article  CAS  Google Scholar 

  • Zhang H, Jia X, Liu Z, Li Z (2004) The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol–gel process. Mater Lett 58:1625–1628

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under 50872046, the International S&T Cooperation Program (ISCP) of MOST under 2008DFA50340, and the Specialized Research Foundation for the Doctoral Programs of MOE (20070730022), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Du, X., Li, S. et al. Synthesis of MgAl2O4 spinel nanoparticles using a mixture of bayerite and magnesium sulfate. J Nanopart Res 12, 1813–1819 (2010). https://doi.org/10.1007/s11051-009-9739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9739-2

Keywords

Navigation