Skip to main content
Log in

Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report an efficient process for preparing monodisperse SiO2@Y0.95Eu0.05VO4 core–shell phosphors using a simple citrate sol–gel method and without the use of surface-coupling silane agents or large stabilizers. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the resulting SiO2@Y0.95Eu0.05VO4 core–shell phosphors. The XRD results demonstrate that the Y0.95Eu0.05VO4 particles crystallization on the surface of SiO2 annealing at 800 °C is perfectly and the crystallinity increases with raising the annealing temperature. The obtained core–shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 500 nm and an average thickness of ~50 nm), are not agglomerated, and have a smooth surface. The thickness of the YVO4:Eu3+ shells on the SiO2 cores could be easily tailored by changing the mass ratio of shell to core (W = [YVO4]/[SiO2]) (~50 nm for W = 30%). The Eu3+ shows a strong PL luminescence (dominated by 5D0 − 7F2 red emission at 618 nm) under the excitation of 320 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the values of W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berndt I, Pedersen JS, Richtering W (2006) Temperature-sensitive core–shell microgel particles with dense shell. Angew Chem Int Ed 45:1737–1741. doi:10.1002/anie.200503888

    Article  CAS  Google Scholar 

  • Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-Verlag, Berlin, Germany, p 41

  • Brecher C, Samelson H, Lempicik A, Riley R, Peters T (1967) Polarized spectra and crystal-field parameters of Eu in YVO4. Phys Rev 155:178. doi:10.1103/PhysRev.155.178

    Article  CAS  ADS  Google Scholar 

  • Chen YJ, Zhu CL, Wang TH (2006) Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology 17:4537–4541. doi:10.1088/0957-4484/17/18/002

    Article  CAS  ADS  Google Scholar 

  • Erdei S, Schlecht R, Ravichandran D (1999) Hydrolyzed colloid reaction (HCR) technique for phosphor powder preparation. Displays 19:173–178. doi:10.1016/S0141-9382(98)00047-X

    Article  CAS  Google Scholar 

  • Fujii T, Kodaira K, Kawauchi O, Tanaka N, Yamashita H, Anpo M (1997) Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses. J Phys Chem B 101:10631–10637. doi:10.1021/jp971540u

    Article  CAS  Google Scholar 

  • Hall SR, Davis SA, Mann S (2000) Cocondensation of organosilica hybrid shells on nanoparticle templates: a direct synthetic route. Langmuir 16:1454–1456. doi:10.1021/la9909143

    Article  CAS  Google Scholar 

  • Huignard A, Gacoin T, Boilot JP (2000) Synthesis and luminescence properties of colloidal YVO4:Eu phosphors. Chem Mater 12:1090–1094. doi:10.1021/cm990722t

    Article  CAS  Google Scholar 

  • Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP (2002) Synthesis and characterizations of YVO4:Eu colloids. Chem Mater 14:2264–2269. doi:10.1021/cm011263a

    Article  CAS  Google Scholar 

  • Iler RK (1959) US Patent. No. 2808815, 250

  • Jang J, Nam Y, Yoon H (2005) Tunable magnetic arrangement of iron oxide nanoparticles in situ synthesized on the solid substrate. Adv Mater 17:1382–1386. doi:10.1002/adma.200401841

    Article  CAS  Google Scholar 

  • Kang WY, Park JS, Kim DK, Suh KS (2001) Silica spheres coated with YVO4:Eu3+ layers via sol–gel process. Bull Korean Chem Soc 22:921–927

    CAS  Google Scholar 

  • Kompe K, Borchert H, Storz J, Lobo A, Adam S, Moller T, Haase M (2003) Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell). Angew Chem Int Ed 42:5513–5516. doi:10.1002/anie.200351943

    Article  Google Scholar 

  • Kong DY, Yu M, Lin CK, Liu XM, Lin J, Fang J (2005) Sol–gel synthesis of ZnSiO:Mn@ SiO2 spherical core–shell particles. J Electrochem Soc 9:152–156

    Google Scholar 

  • Krassimir PV, Blaaderen AV (2001) Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals. Langmuir 17:4779. doi:10.1021/la0101548 252

    Article  Google Scholar 

  • Lawrie GA, Battersby BJ, Trau M (2003) Synthesis of optically complex core–shell colloidal suspensions: pathways to multiplexed biological. Adv Funct Mater 13:887–896. doi:10.1002/adfm.200304390

    Article  CAS  Google Scholar 

  • Lee IS, Lee N, Park J, Kim BH, Yi YW, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged. J Am Chem Soc 128:10658–10659. doi:10.1021/ja063177n

    Article  CAS  PubMed  Google Scholar 

  • Levine AK, Palilla FC (1964) Size-and shape-tailored hydrothermal synthesis of YVO4 crystals in ultra-wide pH range conditions. Appl Phys Lett 5:118. doi:10.1063/1.1723611

    Article  CAS  ADS  Google Scholar 

  • Lin CK, Kong DY, Liu XM, Wang H, Yu M, Lin J (2007) Monodisperse and core−shell-structured SiO2@ YBO3:Eu3+ spherical particles. Inorg Chem 46:2674–2681. doi:10.1021/ic062318j

    Article  CAS  PubMed  Google Scholar 

  • Liu GX, Hong GY (2005) Synthesis of SiO2/Y2O3: Eu core–shell materials and hollow spheres. J Alloy Compd 178:1647–1651

    CAS  Google Scholar 

  • Newport A, Silver J, Vecht A (2000) The synthesis of fine particle yttrium vanadate phosphors from spherical power precursors using urea precipitation. J Electro Chem Sci 944:3144–3947

    Google Scholar 

  • Nien YT, Hwang KH, Chen IG, Yu K (2008) Photoluminescence enhancement of ZnS:Mn nanoparticles by SiO2 coating. J Alloy Compd 455:519–523

    CAS  Google Scholar 

  • Ohmori M, Matijevic E (1992) Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite. J Colloid Interface Sci 251:150594

    Google Scholar 

  • Riwotzki K, Haase M (1998) Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy). J Phys Chem B 102:10129–10135. doi:10.1021/jp982293c

    Article  CAS  Google Scholar 

  • Riwotzki K, Haase M (2001) Colloidal YVO4:Eu and YP0.95V0.05O4:Eu nanoparticles: luminescence and energy transfer processes. J Phys Chem B 105:12709–12713. doi:10.1021/jp0113735

    Article  CAS  Google Scholar 

  • Ryan JN, Elimelech M, Baeseman JL, Magelky RD (2000) Silica-coated titania and zirconia colloids for subsurface transport field experiments. Environ Sci Technol 34:2000–2005. doi:10.1021/es9909531

    Article  CAS  Google Scholar 

  • Schuetzand P, Caruso F (2002) Fabrication and optical properties of core–shell structured spherical SiO2@ GdVO4:Eu3+ phosphors. Chem Mater 14:4509. doi:10.1021/cm0212257

    Article  Google Scholar 

  • Shen WY, Pang ML, Lin J, Fang JY (2005) Host-sensitized luminescence of Dy in nanocrystalline β-GaO prepared by a Pechini-type sol–gel. J Electrochem Soc 152:1125–1129. doi:10.1149/1.1847674

    Article  Google Scholar 

  • Sondi I, Fedynyshyn TH, Sinta R, Matijevic E (2000) Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir 16:9031–9036. doi:10.1021/la000618m

    Article  CAS  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  • Teng F, Tian ZJ, Xiong GX, Xu ZS (2004) Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation. Catal Today 93–95:651–657. doi:10.1016/j.cattod.2004.06.125

    Article  Google Scholar 

  • Vecht A, Gibbons C, Davies D, Jing X, Marsh P, Ireland T, Silver J, Newport A, Barber D (1999) Engineering phosphors for field emission displays. J Vac Sci Technol B 17:750–757. doi:10.1116/1.590633

    Article  CAS  Google Scholar 

  • Wang DS, He JB, Rosenzweig N, Rosenzweig Z (2004) Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett 4:2337–2342. doi:10.1021/nl048653r

    Article  ADS  Google Scholar 

  • Wang H, Lin CK, Liu XM, Lin J (2005) Monodisperse spherical core–shell-structured phosphors obtained by functionalization of silica. Appl Phys Lett 187:181907. doi:10.1063/1.2123382

    Article  ADS  Google Scholar 

  • Wu X, Tao Y, Song C, Mao C, Dong L, Zhu J (2006) Morphological control and luminescent properties of YVO4:Eu nanocrystals. J Phys Chem B 110:15791–15796. doi:10.1021/jp060527j

    Article  CAS  PubMed  Google Scholar 

  • Wyckoff RWG (1964) Crystal structure. Interscience, New York

    Google Scholar 

  • Xia HL, Tang FQ (2003) Surface synthesis of zinc oxide nanoparticles on silica spheres: preparation and characterization. J Phys Chem B 107:9175–9178. doi:10.1021/jp0261511

    Article  CAS  Google Scholar 

  • Yu M, Lin J, Fang J (2005) Silica spheres coated with YVO4:Eu3+ layers via sol–gel process: a simple method to obtain. Phys Lett 17:1783–1791

    CAS  Google Scholar 

  • Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide−zinc selenide core−shell nanocrystals. J Am Chem Soc 128:2526–2527. doi:10.1021/ja0579816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, A., Lai, H., Yang, Y. et al. Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles. J Nanopart Res 12, 635–643 (2010). https://doi.org/10.1007/s11051-009-9633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9633-y

Keywords

Navigation