Skip to main content
Log in

Structural transformation of vapor grown carbon nanofibers studied by HRTEM

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Vapor grown carbon nanofibers have been extensively manufactured and investigated in recent years. In this study commercially available vapor grown carbon nanofibers subjected to different processing and post processing conditions were studied employing high resolution TEM images. The analysis showed that the fibers consist primarily of conical nanofibers, but can contain a significant amount of bamboo nanofibers. Most conical nanofibers were found to consist of an ordered inner layer and a disordered outer layer, with the cone angle distribution of the inner layers indicating that these cannot have a stacked cone structure but are compatible with a cone-helix structure. Fibers that have been heat treated to temperatures above 1,500 °C undergo a structural transformation with the ordered inner layers changing from a cone-helix structure to a highly ordered multiwall stacked cone structure. The bamboo nanofibers were found to have a tapered multiwall nanotube structure for the wall and a multishell fullerene structure for the cap of each segment, surrounded by a disordered outer layer. When these fibers are heat treated the disordered outer layers transform to an ordered multiwall nanotube structure and merge with the wall of each segment. The end caps of each segment transform from a smooth multiwall fullerene structure to one consisting of disjointed graphene planes. A reaction-diffusion mechanism is proposed to explain the growth and structure of the bamboo nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amelinckx S, Luyten W, Krekels T, Van Tendeloo G, Van Landuyt J (1992) Conical, helically wound, graphite whiskers: a limiting member of the “fullerenes”. J Cryst Growth 12:543–558

    Article  Google Scholar 

  • Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315–323

    Article  CAS  Google Scholar 

  • Blank VD, Polyakov EV, Batov DV, Kulnitskiy BA, Bangert U, Gutierrez-Sosa A, Harvey AJ, Seepujak A (2003) Formation of N-containing C-nanotubes and nanofibres by carbon resistive heating under high nitrogen pressure. Diamond Relat Mater 12:864–869

    Article  CAS  Google Scholar 

  • Bourgeois L, Bando Y, Kurashima K, Sato T (2000a) Co-produced carbon and boron nitride helical cones and the nucleation of curved BN sheets. Philos Mag A 80:129–142

    Article  CAS  Google Scholar 

  • Bourgeois L, Bando Y, Sato T (2000b) Tubes of rhombohedral boron nitride. J Phys D 33:1902–1908

    Article  CAS  Google Scholar 

  • Butenko YV, Krishnamurthy S, Chakraborty AK, Kuznetsov VL, Dhanak VR, Hunt MRC, Šiller L (2005) Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys Rev B 71:75420–75429

    Article  CAS  Google Scholar 

  • Chiu PW, Duesberg GS, Dettlaff-Weglikowska U, Roth S (2002) Interconnection of carbon nanotubes by chemical functionalization. Appl Phys Lett 80:3811–3813

    Article  CAS  Google Scholar 

  • Cui H, Yang X, Simpson ML, Lowndes DH, Varela M (2004) Initial growth of vertically aligned carbon nanofibers. Appl Phys Lett 84:4077–4079

    Article  CAS  Google Scholar 

  • Darmstadt H, Roy C, Kaliaguine S, Ting JM, Alig RL (1998) Surface spectroscopic analysis of vapour grown carbon fibres prepared under various conditions. Carbon 36:1183–1190

    Article  CAS  Google Scholar 

  • Double DD, Hellawell A (1974) Defects in eutectic flake graphite. Cone–helix growth forms of graphite. Acta Metall 22:481–487

    Article  CAS  Google Scholar 

  • Eksioglu B, Nadarajah A (2006) Structural analysis of conical carbon nanofibers. Carbon 44:360–373

    Article  CAS  Google Scholar 

  • Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS (2002) Structural characterization of cup-stacked–type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1269

    Article  CAS  Google Scholar 

  • Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS (2003). Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon 41:1941–1947

    Article  CAS  Google Scholar 

  • Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110

    Article  CAS  Google Scholar 

  • Helveg S, López-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jaszczak JA, Robinson GW, Dimovski S, Gogotsi Y (2003) Naturally occurring graphite cones. Carbon 41:2085–2092

    Article  CAS  Google Scholar 

  • Kiselev NA, Sloan J, Zakharov DN, Kukovitskii EF, Hutchison JL, Hammer J, Kotosonov AS (1998) Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36:1149–1157

    Article  CAS  Google Scholar 

  • Lakshminarayanan PV, Toghiani H, Pittman CU (2004) Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 42:2433–2442

    Article  CAS  Google Scholar 

  • Lee CJ, Oark J (2000) Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl Phys Lett 77:3397–3399

    Article  CAS  Google Scholar 

  • Li J, Vergne MJ, Mowles ED, Zhong W-H, Hercules DM, Lukehart CM (2005) Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs). Carbon 43:2883–2893

    Article  CAS  Google Scholar 

  • Naguib NN, Mueller YM, Bojczuk PM, Rossi MP, Katsikis PD, Gogotsi Y (2005) Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology 16:567–571

    Article  CAS  Google Scholar 

  • O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    Article  CAS  Google Scholar 

  • Oberlin A, Endo M, Koyama T (1976). Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    Article  CAS  Google Scholar 

  • Ozawa M, Goto H, Kusunoki M, Osawa E (2002) Continuously growing spiral carbon nanoparticles as the intermediates in the formation of fullerenes and nanoonions. J Phys Chem B 106:7135–7138

    Article  CAS  Google Scholar 

  • Paredes JI, Burghard M, Martínez-Alonso A, Tascón JMD (2005) Graphitization of carbon nanofibers: visualizing the structural evolution on the nanometer and atomic scales by scanning tunneling microscopy. Appl Phys A 80:675–682

    Article  CAS  Google Scholar 

  • Ros TG, Van Dillen AJ, Geus JW, Koningsberger DC (2002) Surface oxidation of carbon nanofibers. Euro J Chem 8:1151–1162

    Article  CAS  Google Scholar 

  • Saito Y, Yoshikawa T (1993) Bamboo-shaped carbon tube filled partially with nickel. J Cryst Growth 134:154–156

    Article  CAS  Google Scholar 

  • Saito Y (1995) Nanoparticles and filled nanocapsules. Carbon 33:979–988

    Article  CAS  Google Scholar 

  • Shioyama H (2005) The production of a sheath around a stacked-cup carbon nanofiber. Carbon 43:195–213

    Article  CAS  Google Scholar 

  • Terrones H, Hayashi T, Muñoz-Navia M, Terrones M, Kim YA, Grobert N, Kamalakaran K, Dorantes-Dávila J, Escudero R, Dresselhaus MS, Endo M (2001) Graphitic cones in palladium catalysed carbon nanofibres. Chem Phys Lett 343:241–250

    Article  CAS  Google Scholar 

  • Tibbetts GG, Doll GL, Gorkiewicz DW, Moleski JJ, Perry TA, Dasch CJ, Balogh MJ (1993a) Physical properties of vapor-grown carbon fibers. Carbon 31:1039–1047

    Article  CAS  Google Scholar 

  • Tibbetts GG, Gorkiewics DW, Alig RL (1993b) A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons. Carbon 31:809–814

    Article  CAS  Google Scholar 

  • Tibbetts GG, Bernado CA, Gorkiewics DW, Alig RL (1994) Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 32:569–576

    Article  CAS  Google Scholar 

  • Wang Yu, Santiago-Aviles JJ, Furlan R, Ramos I (2003) Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofibers. IEEE Trans Nanotechnol 2:39–43

    Article  Google Scholar 

  • Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interface. Polymer 44:7757–7764

    Article  CAS  Google Scholar 

  • Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44:537–562

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants DAAD19-03-1-0012 and W911NF-05-1-0542 from the Army Research Office. The authors gratefully acknowledge ASI for supplying the carbon nanofibers and Thomas Hughes and Gerald Glasgow of ASI for discussions on their processing conditions. The expert assistance of Drs. John Mansfield, Kai Sun and Haiping Sun of EMAL at the University of Michigan for the collection of TEM images and diffraction data of nanofibers is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunan Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, J.G., Berhan, L.M. & Nadarajah, A. Structural transformation of vapor grown carbon nanofibers studied by HRTEM. J Nanopart Res 10, 1155–1167 (2008). https://doi.org/10.1007/s11051-007-9341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9341-4

Keywords

Navigation