Skip to main content
Log in

A computational journey into the mind

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

The first half of this paper is the written version of the invited talk presented at Unconventional Computing UC10, The University of Tokyo, Japan, June 21–25, 2010. It describes some salient features of hypercomputation in Dickson algebras. Such quadratic algebras form an appropriate framework for nonlinear computations which does not limit a priori the computational power of multiplication. They underlie paradoxical mathematics whose potential interest to analyse some computational aspects of the human mind which resist the classical approach is presented. In its last part, the paper offers new glimpses on the organic logic for hypercomputation by developing a fresh look at plane geometry in relation with the ζ function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SVD:

Singular Value Decomposition

FTA:

Fundamental Theorem of Algebra

iff:

if and only if

IFS:

Iterated function system

MGG:

Matrix graph grammar

References

  • Atkins R et al (2010) A characterization of hyperbolic iterated function systems. Topol Proc 36:189–211

    MATH  MathSciNet  Google Scholar 

  • Baez J (2001) The octonions. Bull AMS 39:145–205

    Article  MathSciNet  Google Scholar 

  • Barnsley M (1988) Fractals everywhere. Academic Press, San Diego

    MATH  Google Scholar 

  • Berry G (2009) Penser, modéliser et maitriser le calcul informatique. Collège de France/Fayard, Paris

    Google Scholar 

  • Berthoz A (2009) La simplexité. Odile Jacob, Paris

    Google Scholar 

  • Blair D (2000) Inversion theory and conformal mapping. Student Mathematical Library, Providence

    MATH  Google Scholar 

  • Calude C, Chatelin F (2010) A dialogue about Qualitative Computing. Bull EATCS 101:29–41

    Google Scholar 

  • Calude C et al (2010) The complexity of proving chaoticity and the Church–Turing thesis. Chaos 20:037103

    Article  MathSciNet  Google Scholar 

  • Chaitin-Chatelin F Computing beyond classical logic: SVD computation in nonassociative Dickson algebras. In: Calude C (eds) Randomness & complexity, from Leibniz to Chaitin. pp 13–23 World Scientific, Singapore, (2007)

    Chapter  Google Scholar 

  • Chatelin F (1993) Eigenvalues of matrices. Wiley, Chichester

    MATH  Google Scholar 

  • Chatelin F (2010) Numerical information processing under the global rule expressed by the Euler–Riemann ζ function defined in the complex plane. Chaos 20:037104

    Article  MathSciNet  Google Scholar 

  • Chatelin F (2011) Qualitative computing, a computational journey into nonlinearity. World Scientific, Singapore

  • Conway J, Smith D (2003) On quaternions and octonions. A. K. Peters, Natick

    MATH  Google Scholar 

  • Dickson L (1912) Linear algebras. Trans AMS 13:59–73

    Article  MATH  Google Scholar 

  • Dickson L (1923) A new simple theory of hypercomplex integers. J Math Pures Appl 2:281–326

    Google Scholar 

  • Douillet P (2009) Pencils of cycles in the triangle plane. Working Paper ENSAIT, University of Lille

  • Eakin P, Sathaye A (1990) On automorphisms and derivations of Cayley–Dickson algebras. J Algebra 129:263–278

    Article  MATH  MathSciNet  Google Scholar 

  • Gutzwiller MC (1990) Chaos in classical and quantum mechanics. Springer, Berlin

    MATH  Google Scholar 

  • Hurwitz A (1919) Vorlesungen über die Zahlentheorie der Quaternionen. Julius Springer, Berlin

    MATH  Google Scholar 

  • Jordan C (1874) Mémoire sur les formes bilinéaires. J Math Pures Appl 19(Série 2):35–54

    Google Scholar 

  • Klein E (2005) Chronos: how time shapes the Universe. Avalon Publishing Group, New York

    Google Scholar 

  • Mahler K (1943) On ideals in the Cayley–Dickson algebra. Proc R Irish Acad 48:123–133

    MathSciNet  Google Scholar 

  • Maxwell JC (1891) A treatise on electricity and magnetism, 3rd edn in 2 vols (republ. 1954). Dover, New York

  • Pérez Velasco PP, de Lara J (2009) Matrix graph grammars and monotone complex logics. ArXiv:0902.0850 v1 [cs. DM]

  • Pfieffer R, van Hook C (1993) Circles, vectors and linear algebra. Math Mag 66:75–86

    Article  MathSciNet  Google Scholar 

  • Plouffe S (1998) The computation of certain numbers using a ruler and compass. J Integer Seq 1:article 98.1.3

  • Poincaré H (1898) On the foundations of geometry. Monist 9:1–43

    Google Scholar 

  • Poincaré H (1902) La Science et l’Hypothèse. Flammarion, Paris

    MATH  Google Scholar 

  • Poon C-S, Young DL (2006) Non associative learning as gated neural integrator and differentiator in stimulus-response pathways. Behav Brain Funct 2:29

    Article  Google Scholar 

  • Rumely R (1986) Arithmetic over the ring of algebraic integers. J Reine Angew Math 368:127–133

    Article  MATH  MathSciNet  Google Scholar 

  • Schafer R (1954) On algebras formed by the Cayley–Dickson process. Am J Math 76:435–446

    Article  MATH  MathSciNet  Google Scholar 

  • Schafer R (1966) An introduction to nonassociative algebras. Academic Press, New York

    MATH  Google Scholar 

  • Ungar AA (1988) The Thomas rotation formulation underlying a nonassociative group structure for relativistic velocities. Appl Math Lett 1:403–405

    Article  MATH  MathSciNet  Google Scholar 

  • Ungar AA (2001) Beyond the Einstein addition law and its gyroscopic Thomas precession. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Valaas L (2006) Triangles in hyperbolic geometry, e-manuscript, Senior project. Whitman College

  • Varičak V (1910) Anwendung der Lobatchefskjschen Geometrie in der Relativtheorie. Phys Z 10:826–829

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the two referees whose constructive remarks led to a substantial clarification of the paper. She is grateful to C. Calude for inviting her to talk at UC2010 and to G. Chaitin for his words of encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Chatelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatelin, F. A computational journey into the mind. Nat Comput 11, 67–79 (2012). https://doi.org/10.1007/s11047-011-9269-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-011-9269-6

Keywords

Navigation