Skip to main content
Log in

Identification of Clinical Trichosporon asteroides Strains by MALDI-TOF Mass Spectrometry: Evaluation of the Bruker Daltonics Commercial System and an In-House Developed Library

  • Short Communication
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Trichosporon asteroides is an emerging yeast-like pathogen commonly misidentified by commercial biochemical identification systems. We evaluated the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of 21 clinical T. asteroides strains using the Bruker Daltonics database (BDAL) and an in-house developed library. Mass spectra were obtained by the FlexControl system v.3.4, and characterizations were performed in the Biotyper BDAL database v.4.1 and the developed in-house library. Species identification for T. asteroides failed as all 21 strains were misidentified as T. japonicum (log-scores 1.89–2.19). Extending the existing database was crucial to achieving 100% correct species-level identification and accurate distinction between species. Our results indicate that the commercial BDAL database has no discriminatory power to distinguish between T. japonicum and T. asteroides. Whereas improvement of the current BDAL database is pending, we strongly advise system users not to exclude the possibility of the failure to report T. asteroides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Francisco EC, de Almeida Junior JN, de Queiroz TF, Aquino VR, Mendes AVA, de Andrade Barberino MGM, de Tarso O, Castro P, Guimarães T, Hahn RC, Padovan ACB, Chaves GM, Colombo AL. Species distribution and antifungal susceptibility of 358 Trichosporon clinical isolates collected in 24 medical centres. Clin Microbiol Infect. 2019;25(7):909.e1-909.e5. https://doi.org/10.1016/j.cmi.2019.03.026.

    Article  CAS  PubMed  Google Scholar 

  2. Nobrega de Almeida J, Francisco EC, Holguín Ruiz A, Cuéllar LE, Rodrigues Aquino V, Verena Mendes A, Queiroz-Telles F, Santos DW, Guimarães T, Maranhão Chaves G, Grassi de Miranda B, Araújo Motta F, Vargas Schwarzbold A, Oliveira M, Riera F, SardiPerozin J, Pereira Neves R, França E Silva ILA, Sztajnbok J, Fernandes Ramos J, Borges Botura M, Carlesse F, de Tarso de O E Castro P, Nyirenda T, Colombo AL. Epidemiology, clinical aspects, outcomes and prognostic factors associated with Trichosporon fungaemia: results of an international multicentre study carried out at 23 medical centres. J Antimicrob Chemother. 2021;76(7):1907–15. https://doi.org/10.1093/jac/dkab085.

    Article  CAS  PubMed  Google Scholar 

  3. Guo LN, Yu SY, Hsueh PR, Al-Hatmi AMS, Meis JF, Hagen F, Xiao M, Wang H, Barresi C, Zhou ML, de Hoog GS, Xu YC. Invasive infections due to Trichosporon: species distribution, genotyping, and antifungal susceptibilities from a multicenter study in China. J Clin Microbiol. 2019;57(2):e01505-18. https://doi.org/10.1128/JCM.01505-18.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chagas-Neto TC, Chaves GM, Melo ASA, Colombo AL. Bloodstream infections due to Trichosporon spp.: species distribution, Trichosporon asahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Microbiol. 2009;47:1074–81. https://doi.org/10.1128/JCM.01614-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmad S, Al-Mahmeed M, Khan ZU. Characterization of Trichosporon species isolated from clinical specimens in Kuwait. J Med Microbiol. 2005;54:639–46. https://doi.org/10.1099/jmm.0.45972-0.

    Article  CAS  PubMed  Google Scholar 

  6. Chen SC, Perfect J, Colombo AL, Cornely OA, Groll AH, Seidel D, Albus K, de Almedia JN Jr, Garcia-Effron G, Gilroy N, Lass-Flörl C, Ostrosky-Zeichner L, Pagano L, Papp T, Rautemaa-Richardson R, Salmanton-García J, Spec A, Steinmann J, Arikan-Akdagli S, Arenz DE, Sprute R, Duran-Graeff L, Freiberger T, Girmenia C, Harris M, Kanj SS, Roudbary M, Lortholary O, Meletiadis J, Segal E, Tuon FF, Wiederhold N, Bicanic T, Chander J, Chen YC, Hsueh PR, Ip M, Munoz P, Spriet I, Temfack E, Thompson L, Tortorano AM, Velegraki A, Govender NP. Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect Dis. 2021;21(12):e375–86. https://doi.org/10.1016/S1473-3099(21)00203-6.

    Article  PubMed  Google Scholar 

  7. Al-Mahmeed M, Khan ZU, Ahmad S, Chehadeh W. Antifungal susceptibility profile of clinical Trichosporon asahii and Trichosporon asteroides isolates identified by molecular methods. J Chemother. 2009;21(3):360–2. https://doi.org/10.1179/joc.2009.21.3.360.

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez-Tudela JL, Diaz-Guerra TM, Mellado E, Cano V, Tapia C, Perkins A, Gomez-Lopez A, Rodero L, Cuenca-Estrella M. Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother. 2005;49(10):4026–34. https://doi.org/10.1128/AAC.49.10.4026-4034.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmad S, Al-Mahmeed M, Khan ZU. Characterization of Trichosporon species isolated from clinical specimens in Kuwait. J Med Microbiol. 2005;54(Pt 7):639–46. https://doi.org/10.1099/jmm.0.45972-0.

    Article  CAS  PubMed  Google Scholar 

  10. Ramani R, Gromadzki S, Pincus DH, Salkin IF, Chaturvedi V. Efficacy of API 20C and ID 32C systems for identification of common and rare clinical yeast isolates. J Clin Microbiol. 1998;36(11):3396–8. https://doi.org/10.1128/JCM.36.11.3396-3398.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Espinel-Ingroff A, Stockman L, Roberts G, Pincus D, Pollack J, Marler J. Comparison of RapID yeast plus system with API 20C system for identification of common, new, and emerging yeast pathogens. J Clin Microbiol. 1998;36(4):883–6. https://doi.org/10.1128/JCM.36.4.883-886.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitch TT, Jacobs MR, McGinnis MR, Appelbaum PC. Ability of RapID yeast plus system to identify 304 clinically significant yeasts within 5 hours. J Clin Microbiol. 1996;34(5):1069–71. https://doi.org/10.1128/jcm.34.5.1069-1071.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dooley DP, Beckius ML, Jeffrey BS. Misidentification of clinical yeast isolates by using the updated Vitek Yeast Biochemical Card. J Clin Microbiol. 1994;32(12):2889–92. https://doi.org/10.1128/jcm.32.12.2889-2892.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colombo AL, Padovan AC, Chaves GM. Current knowledge of Trichosporon spp. and trichosporonosis. Clin Microbiol Rev. 2011;24(4):682–700. https://doi.org/10.1128/CMR.00003-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2011;17(9):1359–65. https://doi.org/10.1111/j.1469-0691.2010.03398.x.

    Article  CAS  PubMed  Google Scholar 

  16. Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol. 2009;47(9):2912–7. https://doi.org/10.1128/JCM.00389-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Almeida JN Jr, Favero Gimenes VM, Francisco EC, Machado Siqueira LP, Gonçalves de Almeida RK, Guitard J, Hennequin C, Colombo AL, Benard G, Rossi F. Evaluating and improving Vitek MS for identification of clinically relevant species of Trichosporon and the closely related genera Cutaneotrichosporon and Apiotrichum. J Clin Microbiol. 2017;55(8):2439–44. https://doi.org/10.1128/JCM.00461-17.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen JH, Yam WC, Ngan AH, Fung AM, Woo WL, Yan MK, Choi GK, Ho PL, Cheng VC, Yuen KY. Advantages of using matrix-assisted laser desorption ionization–time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J Clin Microbiol. 2013;213(51):3981–7. https://doi.org/10.1128/JCM.01437-13.

    Article  CAS  Google Scholar 

  19. Sugita T, Nakajima M, Ikeda R, Matsushima T, Shinoda T. Sequence analysis of the ribosomal DNA intergenic spacer 1 regions of Trichosporon species. J Clin Microbiol. 2002;40(5):1826–30. https://doi.org/10.1128/JCM.40.5.1826-1830.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parashar A, Rastogi V, Rudramurthy SM, Ghosh AK, Chander J, Kindo AJ. Faster and accurate identification of clinically important Trichosporon using MALDI TOF MS. Indian J Med Microbiol. 2022;40(3):359–64. https://doi.org/10.1016/j.ijmmb.2022.05.014.

    Article  CAS  PubMed  Google Scholar 

  21. Ahangarkani F, Ilkit M, Vaseghi N, Zahedi N, Zomorodian K, Khodavaisy S, Afsarian MH, Abbasi K, de Groot T, Meis JF, Badali H. MALDI-TOF MS characterisation, genetic diversity and antifungal susceptibility of Trichosporon species from Iranian clinical samples. Mycoses. 2021;64(8):918–25. https://doi.org/10.1111/myc.13306.

    Article  CAS  PubMed  Google Scholar 

  22. de Almeida JN Jr, Sztajnbok J, da Silva AR Jr, Vieira VA, Galastri AL, Bissoli L, Litvinov N, Del Negro GM, Motta AL, Rossi F, Benard G. Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry. Med Mycol. 2016;54(8):885–9. https://doi.org/10.1111/1469-0691.12502.

    Article  CAS  PubMed  Google Scholar 

  23. de Almeida Júnior JN, Figueiredo DS, Toubas D, Del Negro GM, Motta AL, Rossi F, Guitard J, Morio F, Bailly E, Angoulvant A, Mazier D, Benard G, Hennequin C. Usefulness of matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry for identifying clinical Trichosporon isolates. Clin Microbiol Infect. 2014;20(8):784–90.

    Article  PubMed  Google Scholar 

  24. Kolecka A, Khayhan K, Groenewald M, Theelen B, Arabatzis M, Velegraki A, Kostrzewa M, Mares M, Taj-Aldeen SJ, Boekhout T. Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51(8):2491–500. https://doi.org/10.1128/JCM.00470-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Er H, Koyuncu-Ozyurt O, Ozhak B, Yazisiz H, Eres-Saritas Z, Cetinkaya O, Ongut G, Ogunc D. Evaluation of an automated yeasts identification system for identification of yeast isolates. Clin Lab. 2020. https://doi.org/10.7754/Clin.Lab.2019.190636.

    Article  PubMed  Google Scholar 

  26. Menu E, Kabtani J, Roubin J, Ranque S, L’Ollivier C. Pericardial effusion due to Trichosporon japonicum: a case report and review of the literature. Pathogens. 2022;11(5):598. https://doi.org/10.3390/pathogens11050598.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xia J, Wang Z, Li T, Lu F, Sheng D, Huang W. Immunosuppressed patients with clinically diagnosed invasive fungal infections: the fungal species distribution, antifungal sensitivity and associated risk factors in a tertiary hospital of Anhui Province. Infect Drug Resist. 2022;2(15):321–33. https://doi.org/10.2147/IDR.S351260.

    Article  Google Scholar 

  28. Albitar-Nehme S, Agosta M, Kowalska AH, Mancinelli L, Onori M, Lucignano B, Mattana G, Quagliarella F, Cefalo MG, Merli P, Locatelli F, Perno CF, Bernaschi P. Case report: Trichosporon japonicum fungemia in a pediatric patient with refractory acute B cell lymphoblastic leukemia. Front Pediatr. 2022;10:861476. https://doi.org/10.3389/fped.2022.861476.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li T, Huang Y, Chen X, Wang Z, Xu Y. Urinary tract infections caused by fluconazole-resistant Trichosporon japonicum in 2 kidney transplant patients and analysis of their homology. Open Forum Infect Dis. 2020;7(9):ofaa365. https://doi.org/10.1093/ofid/ofaa365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bongomin F, Otu A, Calisti G, Richardson MD, Barnard J, Venkateswaran R, Vergidis P. Trichosporon japonicum fungemia and ventricular assist device infection in an immunocompetent patient. Open Forum Infect Dis. 2019;6(9):ofz343. https://doi.org/10.1093/ofid/ofz343.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ağirbasli H, Bilgen H, Ozcan SK, Otlu B, Sinik G, Cerikçioğlu N, Durmaz R, Can E, Yalman N, Gedikoğlu G, Sugita T. Two possible cases of Trichosporon infections in bone-marrow-transplanted children: the first case of T. japonicum isolated from clinical specimens. Jpn J Infect Dis. 2008;61(2):130–2.

    Article  PubMed  Google Scholar 

  32. Lara BR, de Camargo BB, Paula CR, Junior DPL, Garces HG, Arnoni MV, Silveira M, Gimenes VMF, Siqueira LPM, Takahashi JPF, Melhem MSC, Richini-Pereira VB, Anversa L, Ruiz LDS. Comparing the phenotypic, genotypic, and proteomic identification of Trichosporon species: a globally emerging yeast of medical importance. Med Mycol. 2021;59(12):1181–90. https://doi.org/10.1093/mmy/myab050.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Members of the Trichosporon Brazil Network: Northeast region: Guilherme M. Chaves (Universidade Federal do Rio Grande do Norte, Natal); Ana Verena A. Mendes, Marcio de Oliveira Silva and Maria Goreth de Andrade Barberino (Hospital São Rafael de Salvador, Salvador, Brazil); Rejane Pereira Neves (Universidade Federal de Pernambuco, Recife); Monica Borges Botura (Hospital de Clínicas, Universidade Federal da Bahia). Midwest region: Rosane C. Hahn (Universidade Federal de Mato Grosso, Cuiabá). Southeast region: João Nóbrega de Almeida Junior Universidade Federal de São Paulo, São Paulo); Vinicius Ponzio (Hospital Nove de Julho, São Paulo), Paulo de Tarso O. e Castro (Hospital de Câncer de Barretos, Barretos, São Paulo); Thais Guimarães (Hospital do Servidor Público Estadual de São Paulo, São Paulo); Daniel Wagner Santos (Universidade Federal de São Paulo, São Paulo); Bianca Grassi de Miranda (Hospital Samaritano, São Paulo); Ivan Leonardo A França E Silva (A.C. Camargo Cancer Center, São Paulo); Fabianne Carlesse (Departamento de Pediatria, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo and Instituto de Oncologia Pediátrica-IOP-GRAACC-UNIFESP, São Paulo); Jéssica Fernandes Ramos (Hospital Sírio Libanês, São Paulo and Hospital de Clínicas, Hospital das Clínicas da FMUSP, São Paulo). South region: Flávio Queiroz-Telles (Universidade Federal do Paraná, Curitiba, Paraná); Valério Rodrigues Aquino (Hospital das Clínicas de Porto Alegre, Rio Grande do Sul); Fabio Araújo Motta (Hospital Pequeno Príncipe, Curitiba); Alexandre Vargas Schwarzbold (Universidade Federal de Santa Maria, Santa Maria, Brazil); Jamile Sardi Perozin (Hospital do Câncer de Londrina, Londrina).

Funding

The study was partially supported by a grant received from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 484020/2013-7 and CNPq 307510/2015-8). ECF received a fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2020/14097-0 and 2019/24960-0).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ECF and ME. The first draft of the manuscript was written by ECF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Elaine Cristina Francisco or Ferry Hagen.

Ethics declarations

Conflict of interest

Arnaldo Lopes Colombo receive educational grants from Eurofarma, Biotoscana-Knight, United Medical-Knight, Gilead, and Pfizer. The other authors report no conflicts of interest that may be relevant to this article. Ferry Hagen is Associate Editor for the journal Mycopathologia. The authors declare that there are no other competing financial interests or personal relationships that could have appeared to influence the research reported here.

Ethical Approval

The study was approved by the Research Ethics Committee of Universidade Federal de São Paulo (Approval Number 6183240519/2019).

Additional information

Handling Editor: Takashi Sugita.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francisco, E.C., Ebbing, M., Colombo, A.L. et al. Identification of Clinical Trichosporon asteroides Strains by MALDI-TOF Mass Spectrometry: Evaluation of the Bruker Daltonics Commercial System and an In-House Developed Library. Mycopathologia 188, 243–249 (2023). https://doi.org/10.1007/s11046-023-00723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-023-00723-3

Keywords

Navigation