Skip to main content
Log in

Serial concatenation of a block code and a 2D convolutional code

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we study two different concatenation schemes of twodimensional (2D) convolutional codes. We consider Fornasini–Marchesini state space representation of 2D linear systems to describe our concatenated codes. Also we present upper and lower bounds on the distance of the proposed concatenated codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida, P., Napp, D., & Pinto, R. (2016). Superregular matrices and applications to convolutional codes. Linear Algebra and its Applications, 499, 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Almeida, P., Napp, D., & Pinto, R. (2018). MDS 2D convolutional codes with optimal 1D horizontal projections. Designs, Codes and Cryptography, 86, 285–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Antsaklis, P. J., & Michel, A. N. (2006). Linear systems. Boston, MA: Birkhäuser.

    MATH  Google Scholar 

  • Brás, I., & Rocha, P. (2002). State driving-variable representation of 2D systems. Multidimensional Systems and Signal Processing, 13(2), 129–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Charoenlarpnopparut, C., & Bose, N. K. (2001). Gröbner bases for problem solving in multidimensional systems. Multidimensional Systems and Signal Processing, 12(3), 365–376.

    Article  MathSciNet  MATH  Google Scholar 

  • Climent, J. J., Herranz, V., & Perea, C. (2007). A first approximation of concatenated convolutional codes from linear systems theory viewpoint. Linear Algebra and its Applications, 425, 673–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Climent, J. J., Herranz, V., & Perea, C. (2008). Linear system modelization of concatenated block and convolutional codes. Linear Algebra and its Applications, 429, 1191–1212.

    Article  MathSciNet  MATH  Google Scholar 

  • Climent, J. J., Herranz, V., & Perea, C. (2016). Parallel concatenated convolutional codes from linear systems theory viewpoint. Systems and Control Letters, 96, 15–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Climent, J. J., Napp, D., Perea, C., & Pinto, R. (2012). A construction of MDS \(2\)D convolutional codes of rate \(1/n\) based on superregular matrices. Linear Algebra and its Applications, 437(3), 766–780.

    Article  MathSciNet  MATH  Google Scholar 

  • Climent, J. J., Napp, D., Perea, C., & Pinto, R. (2016). Maximum distance separable 2D convolutional codes. IEEE Transactions on Information Theory, 62(2), 669–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Climent, J.J., Napp, D., Pinto, R., Simões, R. (2015). Series concatenation of 2D convolutional codes. In: R. Pinto, P. Rocha Malonek, P. Vettori (eds.) Proceedings of the IEEE 9th International Workshop on Multidimensional Systems (nDS2015).

  • Fornasini, E., Marchesini, G. (1986). Structure and properties of two-dimensional systems. In: S. G. Tzafestas (Ed.), Multidimensional systems, techniques and applications (pp. 37–88). CRC Press.

  • Fornasini, E., & Valcher, M. E. (1994). Algebraic aspects of two-dimensional convolutional codes. IEEE Transactions on Information Theory, 40(4), 1068–1082.

    Article  MathSciNet  MATH  Google Scholar 

  • Forney Jr, G.D. (1965). Concatenated codes. Tech. Rep. 440, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA

  • Hagenauer, J., Hoeher, P. (1989). Concatenated viterbi decoding. In: Proceedings of the 4th Joint Swedish-Soviet International Workshop on Information theory (pp. 29–33). Gotland, Sweden.

  • Jangisarakul, P., & Charoenlarpnopparut, C. (2011). Algebraic decoder of multidimensional convolutional code: constructive algorithms for determining syndrome decoder and decoder matrix based on Gröbner basis. Multidimensional Systems and Signal Processing, 22(1–3), 67–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Johannesson, R., & Zigangirov, K. S. (1999). Fundamentals of convolutional coding. New York, NY: IEEE Press.

    Book  MATH  Google Scholar 

  • Kailath, T. (1980). Linear systems. Upper Saddle River, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Kuijper, M., & Polderman, J. W. (2004). Reed-Solomon list decoding from a system-theoretic perspective. IEEE Transactions on Information Theory, 50(2), 259–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Lobo, R. G., Bitzer, D. L., & Vouk, M. A. (2012). Locally invertible multidimensional convolutional encoders. IEEE Transactions on Information Theory, 58(3), 1774–1782.

    Article  MathSciNet  MATH  Google Scholar 

  • MacWilliams, F. J., & Sloane, N. J. A. (1988). The theory of error-correcting codes (6th ed.). Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Massey, J. L., & Sain, M. K. (1967). Codes, automata, and continuous systems: Explicit interconnections. IEEE Transactions on Automatic Control, 12(6), 644–650.

    Article  Google Scholar 

  • Massey, J. L., & Sain, M. K. (1968). Inverses of linear sequential circuits. IEEE Transactions on Computers, 17(4), 330–337.

    Article  MATH  Google Scholar 

  • Napp, D., Perea, C., & Pinto, R. (2010). Input-state-output representations and constructions of finite support 2D convolutional codes. Advances in Mathematics of Communications, 4(4), 533–545.

    Article  MathSciNet  MATH  Google Scholar 

  • Napp, D., Pinto, R., Simões, R. (2016). Input-state-output representations of concatenated 2D convolutional codes. In: P. Garrido, F. Soares, A.P. Moreira (Eds.) Proceedings of the 12th Portuguese Conference on Automatic Control (CONTROLO2016) (pp. 3–12). Springer International Publishing Switzerland

  • Rocha, P., & Willems, J. C. (2011). Markovian properties for 2D behavioral systems described by PDE’s: The scalar case. Multidimensional Systems and Signal Processing, 22, 45–53.

    Article  MathSciNet  MATH  Google Scholar 

  • Roman, S. (1992). Coding and information theory. New York, NY: Springer.

    MATH  Google Scholar 

  • Rosenthal, J. (1997). Some interesting problems in systems theory which are of fundamental importance in coding theory. In: Proceedings of the 36th IEEE Conference on Decision and Control (pp. 4574–4579). San Diego, California.

  • Rosenthal, J. (2001). Connections between linear systems and convolutional codes. In B. Marcus & J. Rosenthal (Eds.), Codes, systems and graphical models, the IMA volumes in mathematics and its applications (Vol. 123, pp. 39–66). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Rosenthal, J., Schumacher, J. M., & York, E. V. (1996). On behaviors and convolutional codes. IEEE Transactions on Information Theory, 42(6), 1881–1891.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenthal, J., & York, E. V. (1999). BCH convolutional codes. IEEE Transactions on Information Theory, 45(6), 1833–1844.

    Article  MathSciNet  MATH  Google Scholar 

  • Smarandache, R., Rosenthal, J. (1998). A state space approach for constructing MDS rate \(1/n\) convolutional codes. In: Proceedings of the 1998 IEEE Information Theory Workshop (ITW 1998) (pp. 116–117). Killarney, Kerry, Ireland

  • Valcher, M. E., & Fornasini, E. (1994). On 2D finite support convolutional codes: An algebraic approach. Multidimensional Systems and Signal Processing, 5(3), 231–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Weiner, P.A. (1998). Multidimensional convolutional codes. Ph.D. thesis, Department of Mathematics, University of Notre Dame, Indiana, USA

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), through CIDMA—Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013 and Ministerio de Economa, Industria y Competitividad within project TIN2016-80565-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Herranz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herranz, V., Napp, D. & Perea, C. Serial concatenation of a block code and a 2D convolutional code. Multidim Syst Sign Process 30, 1113–1127 (2019). https://doi.org/10.1007/s11045-018-0591-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0591-3

Keywords

Navigation