Skip to main content
Log in

Target recognition and discrimination based on multiple-frequencies LFM signal with subcarrier hopping

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

An anti-deception jamming technique is proposed for moving target indication in a pulse-Doppler (PD) radar. The deceive targets are produced by digital radio frequency memory, which tries to pull off the range and velocity gates of real targets. Similar to orthogonal frequency division multiplexing, we use different sets of orthogonal sub-carriers in consecutive coherent pulse intervals (CPIs). By changing sub-carriers in different CPIs, we show that the deceive targets appear as interference in receiving signals. The generalized likelihood ratio test is used for detection and discrimination of real targets. The performance of the proposed method is achieved analytically and by simulations. Furthermore, we implement a hardware block using a TMS6416-DSK DSP for a PD radar prototype exploiting the proposed algorithm to deception discrimination. The presented results demonstrate the good accordance with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Akhtar, J. (2009). Orthogonal block coded ECCM schemes against repeat radar jammers. IEEE Transactions on Aerospace and Electronic Systems, 45, 1218–1226.

    Article  Google Scholar 

  • Cheng, S., Wang, W. Q., & Shao, H. (2016). Large time-bandwidth product OFDM chirp waveform diversity using for MIMO radar. Multidimensional Systems and Signal Processing, 27, 145–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, H., Himed, B., & Wicks, M. C. (2007). Concurrent extraction of target range and doppler information by using orthogonal coding waveforms. IEEE Transactions on Signal Processing, 55, 3294–3301.

    Article  MathSciNet  MATH  Google Scholar 

  • Elsworth, A. T. (2010). Electronic warfare. New York (NY): Nova Science Publishers.

    Google Scholar 

  • Garmatyuk, D. (2012). Cross-range SAR reconstruction with multicarrier OFDM signals. IEEE Geoscience and Remote Sensing Letters, 9, 808–812.

    Article  Google Scholar 

  • Garmatyuk, D., & Brenneman, M. (2011). Adaptive multicarrier OFDM SAR signal processing. IEEE Transactions on Geoscience and Remote Sensing, 49, 3780–3790.

    Article  Google Scholar 

  • Guosui, L., Hong, G., Xiaohua, Z., & Weimin, S. (1997). The present and the future of random signal radars. IEEE Aerospace and Electronic Systems Magazine, 12, 35–40.

    Article  Google Scholar 

  • Huo, K., Jiang, W. D., Li, X., & Mao, J. J. (2011). A new OFDM phase-coded stepped-frequency radar signal and its characteristic. Journal of Electronics & Information Technology, 46, 677–683.

    Article  Google Scholar 

  • Hu, Y. H., Zheng, Y., & Deng, Y. K. (2008). A survey of radar ECM and ECCM. Journal of Electrical Systems and Information Technology, 30, 1756–1759.

    Article  Google Scholar 

  • Kauppi, J. P., Martikainen, K., & Ruotsalainen, U. (2010). Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns. Neural Networks, 23, 1226–1237.

    Article  Google Scholar 

  • Levanon, N., & Mozeson, E. (2002). Multicarrier radar signal-pulse train and CW. IEEE Transactions on Aerospace and Electronic Systems, 38, 707–720.

    Article  Google Scholar 

  • Liu, Z., Wei, X. Z., & Li, X. (2012). Novel method of unambiguous moving target detection in pulse-doppler radar with random pulse repetition interval. Journal of Radars, 1, 28–35.

    Article  Google Scholar 

  • Li, S., Zhang, L., Liu, N., Zhang, J., & Zhao, S. (2017). Adaptive detection with conic rejection to suppress deceptive jamming for frequency diverse MIMO radar. Digital Signal Processing, 69, 32–40.

    Article  Google Scholar 

  • Manolakis, D. G., Ingle, V. K., & Kogon, S. M. (2005). Statistical and adaptive signal processing. Boston: Artech House.

    Google Scholar 

  • Neng-Jing, L., & Yi-Ting, Z. (1995). A survey of radar ECM and ECCM. IEEE Transactions on Aerospace and Electronic Systems, 31, 1110–1120.

    Article  Google Scholar 

  • Nouri, M., Mivehchy, M., & Abazari Aghdam, S. (2015). Adaptive time–frequency Kernel local fisher discriminant analysis to distinguish range deception jamming. In IEEE conference on computing, communication and networking technologies (ICCCNT) (pp. 1–5).

  • Nouri, M., Mivehchy, M., & Sabahi, M. F. (2017). Novel anti-deception jamming method by measuring phase noise of oscillators in LFMCW tracking radar sensor networks. IEEE Access, 5, 11455–11467.

    Article  Google Scholar 

  • Nouri, M., Mivehchy, M., & Sabahi, M. F. (2017). Target recognition based on phase noise of received signal. IET Electronics Letters, 53, 808–810.

    Article  Google Scholar 

  • Nouri, M., Mivehchy, M., & Sabahi, M. F. (2017). Target recognition based on phase noise of received laser signal in lidar jammer. Chinese Optics Letters, 15, 100302.

    Article  Google Scholar 

  • Nouri, M., Mivehchy, M., & Sabahi, M. F. (2017). Jammer target discrimination based on local variance of signal histogram in tracking radar and its implementation. Signal, Image and Video Processing, 11, 1025–1032.

    Article  Google Scholar 

  • Popper, C., Strasser, M., & Capkun, S. (2010). Anti-jamming broadcast communication using uncoordinated spread spectrum techniques. IEEE Journal on Selected Areas in Communications, 28, 703–715.

    Article  Google Scholar 

  • Quan, H., Zhao, H., & Cui, P. (2014). Anti-jamming frequency hopping system using multiple hopping patterns. Wireless Personal Communications, 81, 1159–1176.

    Article  Google Scholar 

  • Roome, S. J. (1990). Digital radio frequency memory. Electronics & Communication Engineering Journal, 2, 147.

    Article  Google Scholar 

  • Scheer, J., & Melvin, W. L. (2014). Principles of modern radar. Scitech Publishing, an imprint of the IET.

  • Sen, S. (2014). PAPR-constrained pareto-optimal waveform design for OFDM-STAP radar. IEEE Transactions on Geoscience and Remote Sensing, 52, 3658–3669.

    Article  Google Scholar 

  • Shena, M., Wub, D., & Zhub, D. (2012). An ultra-low sidelobe ADBF algorithm for digital array. Journal of Electromagnetic Waves and Applications, 26, 1756–1759.

    Article  Google Scholar 

  • Shina, W. J., Yanga, H., & Youa, Y. H. (2013). Performance of carrier frequency synchronization for OFDM-based mobile cellular systems over time selective fading channels. Journal of Electromagnetic Waves and Applications, 27, 989–998.

    Article  Google Scholar 

  • Sokolovic, V., & Popovic, V. (2009). Radar detection zone under active jamming. Vojnotehnicki Glasnik, 57, 58–79.

    Article  Google Scholar 

  • Soumekh, M. (2006). SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization. IEEE Transactions on Aerospace and Electronic Systems, 42, 191–205.

    Article  Google Scholar 

  • Sun, J., Tian, J., Wang, G., & Mao, S. (2010). Doppler ambiguity resolution for multiple PRF radar using iterative adaptive approach. Electronics Letters, 46, 1562.

    Article  Google Scholar 

  • Su, J., Tao, H. H., Guo, X. L., Xie, J., & Rao, X. (2015). Coherently integrated cubic phase function for multiple LFM signals analysis. Electronics Letters, 51, 411–413.

    Article  Google Scholar 

  • Van Trees, H. L. (2001). Detection, estimation, and modulation theory. New York (NY): Wiley.

    Book  MATH  Google Scholar 

  • Wang, W. Q. (2013). Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity. IEEE Geoscience and Remote Sensing Letters, 10, 101–105.

    Article  Google Scholar 

  • Wang, W. Q. (2015). MIMO SAR OFDM chirp waveform diversity design with random matrix modulation. IEEE Transactions on Geoscience and Remote Sensing, 53, 1615–1625.

    Article  Google Scholar 

  • Wang, J., Chen, L. Y., Liang, X. D., Ding, C. B., & Li, K. (2015). Implementation of the OFDM chirp waveform on MIMO SAR systems. IEEE Transactions on Geoscience and Remote Sensing, 53, 5218–5228.

    Article  Google Scholar 

  • Wen, Q. W., Qicong, P., & Jingye, C. (2009). Waveform-diversity-based millimeter-wave UAV SAR remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 47, 691–700.

    Article  Google Scholar 

  • Yua, A. J., Youa, Y. H., & Songa, H. K. (2015). A hybrid MIMO antenna scheme based on channel condition in OFDM systems. Journal of Electromagnetic Waves and Applications, 29, 2118–2129.

    Article  Google Scholar 

  • Zaugg, E. C., & Long, D. G. (2008). Theory and application of motion compensation for LFM-CW SAR. IEEE Transactions on Geoscience and Remote Sensing, 46, 2990–2998.

    Article  Google Scholar 

  • Zhang, J. D., Zhu, X. H., & Wang, H. Q. (2009). Adaptive radar phase-coded waveform design. Electronics Letters, 45, 1052.

    Article  Google Scholar 

  • Zhang, J., Zhu, D., & Zhang, G. (2013). New antivelocity deception jamming technique using pulses with adaptive initial phases. IEEE Transactions on Aerospace and Electronic Systems, 49, 11290–1300.

    Google Scholar 

  • Zhao, C., Tian, K., & Xu, N. (2011). New jamming scenario: From marginal jamming to deep jamming. Physical Review Letters, 106, 125503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Nouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, M., Mivehchy, M., Parvaresh, F. et al. Target recognition and discrimination based on multiple-frequencies LFM signal with subcarrier hopping. Multidim Syst Sign Process 30, 93–117 (2019). https://doi.org/10.1007/s11045-017-0547-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0547-z

Keywords

Navigation