Skip to main content
Log in

A cartoon-plus-texture image decomposition model for blind deconvolution

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we study a blind deconvolution problem by using an image decomposition technique. Our idea is to make use of a cartoon-plus-texture image decomposition procedure into the deconvolution problem. Because cartoon and texture components can be represented differently in images, we can adapt suitable regularization methods to restore their components. In particular, the total variational regularization is used to describe the cartoon component, and Meyer’s G-norm is employed to model the texture component. In order to obtain the restored image automatically, we also use the generalized cross validation method efficiently and effectively to estimate their corresponding regularization parameters. Experimental results are reported to demonstrate that the visual quality of restored images by using the proposed method is very good, and is competitive with the other testing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aujol, J.-F., Aubert, G., Blanc-Feraud, L., & Chambolle, A. (2002). Image decomposition: Applications to textured images and SAR images. Tech. Rep. 4704, INRIA, France.

  • Aujol, J.-F., & Chambolle, A. (2005). Dual norms and image decomposition models. International Journal of Computer Vision, 63(1), 85104.

    Article  MathSciNet  Google Scholar 

  • Beghdadi, A., & Le Negrate, A. (1989). Contrast enhancement technique based on local detection of edges. Computer Vision, Graphics, and Image Processing, 46, 162–174.

    Article  Google Scholar 

  • Buckley, M. (1994). Fast computation of a discretized thin-plate smoothing spline for image data. Biometrika, 81, 247–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, J.-F., Ji, H., Liu, C., & Shen, Z. (2009a). Blind motion deblurring from a single image using sparse approximation. CVPR.

  • Cai, J.-F., Ji, H., Liu, C., & Shen, Z. (2009b). High-quality curvelet-based motion deblurring from an image pair. CVPR.

  • Cai, Jian-Feng, Ji, Hui, Liu, Chaoqiang, & Shen, Zuowei. (2009). Blind motion deblurring using multiple images. Journal of Computational Physics, 228, 5057–5071.

    Article  MathSciNet  MATH  Google Scholar 

  • Campisi, P., & Egiazarian, K. (2007). Blind image deconvolution: Theory and applications. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20, 89–97.

    Article  MathSciNet  Google Scholar 

  • Chan, R., Ng, M., & Plemmons, R. (1996). Generalization of Strang’s preconditioner with applications to Toeplitz least squares problems. Numerical Linear Algebra with Applications, 3, 45–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T. F., & Wong, C. K. (1998). Total variation blind deconvolution. IEEE Transactions on Image Processing, 7(3), 370–375.

    Article  Google Scholar 

  • Chan, S., Gill, P., & Nguyen, T. (2011). An augmented Lagrangian method for total variation image restoration. IEEE Transactions on Image Processing, 20, 3097–3111.

    Article  MathSciNet  Google Scholar 

  • Cho, S., & Lee, S. (2009) Fast motion deblurring. SIGGRAPH ASIA.

  • Dai, S., & Wu, Y. (2008). Motion from blur. CVPR.

  • Engl, H., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Fergus, R., Singh, B., Hertzbann, A., Roweis, S. T., & Freeman, W. (2006). Removing camera shake from a single photograph. ACM Transactions on Graphics, 25, 787–794.

    Article  Google Scholar 

  • Gilles, J., & Osher, S. (2011). Bregman implementation of Meyer’s G-norm for cartoon + textures decomposition. UCLA Cam Report 11–73, UCLA, Los Angeles, CA.

  • Goldstein, Tom, & Osher, Stanley. (2009). The split bregman method for L1 regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Golub, G., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21, 215–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez, R., & Woods, R. (1992). Digital image processing. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing (2nd ed.). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Huang, Y., & Ng, M. (2008). Lipschitz and total-variational regularization for blind deconvolution. Communications in Computational Physics, 4, 195–206.

    MathSciNet  Google Scholar 

  • Huang, Y., Ng, M., & Wen, Y. (2008). A fast total variation minimization method for image restoration. SIAM Journal on Multiscale Modeling and Simulation, 7, 774–795.

    Article  MathSciNet  MATH  Google Scholar 

  • Jain, A. (1989). Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Jia, J. (2007). Single image motion deblurring using transparency. CVPR.

  • Kim, S. K., & Paik, J. K. (1998). Out-of-focus blur estimation and restoration for digital auto-focusing system. Electronics Letters, 34, 1217–1219.

    Article  Google Scholar 

  • Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., & Harmeling, S. (2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. ECCV.

  • Kundur, D., & Hatzinakos, D. (1996). Blind image deconvolution. IEEE Signal Processing Magazine, 13(3), 43–64.

    Article  Google Scholar 

  • Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2009). Understanding and evaluating blind deconvolution algorithms. IEEE conference on computer vision and pattern recognition (CVPR).

  • Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2011). Efficient marginal likelihood optimization in blind deconvolution. CVPR.

  • Liao, H., & Ng, M. (2010). Blind deconvolution using generalized cross validation approach to regularization parameter estimation. IEEE Transactions on Image Processing, 20, 670–680.

    Article  MathSciNet  Google Scholar 

  • Likas, A., & Galatsanos, N. (2004). A variational approach for Bayesian blind image deconvolution. IEEE Transactions on Signal Processing, 52, 2222–2233.

    Article  MathSciNet  Google Scholar 

  • Matz, S. C., & de Figueiredo, R. J. P. (2006). A nonlinear image contrast sharpening approach based on Munsell’s scale. IEEE Transactions on Image Processing, 15, 900–909.

    Article  Google Scholar 

  • Meyer, Y. (2001). Oscillating patterns in image processing and nonlinear evolution equations. Providence: AMS. (Lewis Memorial Lectures).

    Book  MATH  Google Scholar 

  • Ng, M., Qi, L., Yang, Y., & Huang, Y. (2007). On semismooth Newton’s methods for total variation minimization. Journal of Mathematical Imaging and Vision, 27, 265–276.

    Article  MathSciNet  Google Scholar 

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.

    Article  MathSciNet  MATH  Google Scholar 

  • Russ, J. C. (1995). The image processing handbook. Florida: CRCPress.

    MATH  Google Scholar 

  • Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion deblurring from a single image. In Proceedings of ACM SIGGRAPH.

  • Tai, Yu-Wing, Tan, Ping, & Brown, Michael S. (2011). Richardson–Lucy deblurring for scenes under projective motion path. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 33, 1603–1618.

    Article  Google Scholar 

  • Wang, W., & Ng, M. (2012). On algorithms for automatic deblurring from a single image. Journal of Computational Mathematics, 30(1), 80–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, L., Zheng, S., & Jia, J. (2013). Unnatural L0 sparse representation for natural image deblurring. CVPR.

  • You, Y., & Kaveh, M. (1999). Blind image restoration by anisotropic regularization. IEEE Transactions on Image Processing, 8(3), 396–407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Wei Wang: Research supported by National Natural Science Foundation of China (Grant No. 11201341). Xile Zhao: Research supported by 973 Program (2013CB329404), NSFC (61170311, 61370147, 61402082), and the Fundamental Research Funds for the Central Universities (ZYGX2013J106). M. Ng: Research supported by RGC GRF Grant Numbers 202013, 12301214 and HKBU FRG Grant Number FRG2/13-14/079.

Appendix

Appendix

In this section, we first show the detailed algorithm for minimizing the main problem (2.2). Noting that the algorithm for solving u-subproblem (3.5) has been given in Sect. 3.1, we then summarize the proposed algorithms for solving h-subproblem (3.4) and v-subproblem (3.6).

figure f
figure g
figure h

The problems in (6.1), (3.7), and (6.3) can be solved by using fast Fourier transforms, see Huang et al. (2008). The solutions of the problems in (6.2) and (3.8) are given by,

$$\begin{aligned} \tilde{h}^{i+1}_1 = {{\mathrm{P_{ROF}}}}(h^{i+1}, \beta ), \ \ \tilde{u}^{i+1}_1 = {{\mathrm{P_{ROF}}}}(u^{i+1}, \beta ), \end{aligned}$$

where \(\mathrm{P}_{\mathrm{ROF}}(g, \alpha )\) represents the solution of the ROF model (Rudin et al. 1992) applied to g with a coefficient \(\alpha \), and it can be solved by the projection algorithm (Chambolle 2004; Ng et al. 2007) or the Split Bregman algorithm (Goldstein and Osher 2009). The solution of the problem (6.4) is given as follows,

$$\begin{aligned} \tilde{v}^{i+1}_1 = v^{i+1}-\frac{1}{\beta }\mathrm{P}_{\mathrm{ROF}}\left( \beta v^{i+1}, \frac{1}{\beta \mu }\right) \!, \end{aligned}$$
(6.5)

Actually, the Euler–Lagrange equation of problem (6.4) is given by,

$$\begin{aligned} 0\in \partial J^{*}\left( \frac{\tilde{v}}{\mu }\right) -\beta (v^{i+1}-\tilde{v}) \Longleftrightarrow \beta (v^{i+1}-\tilde{v})\in \partial J^{*}\left( \frac{\tilde{v}}{\mu }\right) \Longleftrightarrow \frac{\tilde{v}}{\mu }\in \partial J(\beta (v^{i+1}-\tilde{v})), \end{aligned}$$

Let \(w = \beta (v^{i+1}-\tilde{v})\), and we have,

$$\begin{aligned} \tilde{v} = v^{i+1}-\frac{w}{\beta }. \end{aligned}$$
(6.6)

Then we derive the following equation,

$$\begin{aligned} \frac{v^{i+1}}{\mu }-\frac{w}{\beta \mu }\in \partial J(w)\Longleftrightarrow 0\in \partial J(w)-\frac{1}{\beta \mu }(\beta v^{i+1}-w). \end{aligned}$$

Consequently, we have \(w = \mathrm{P}_{\mathrm{ROF}}(\beta v^{i+1}, \frac{1}{\beta \mu })\), and combining this with (6.6), we derive the solution (6.5). Again noting that (6.1), (3.7), and (6.3) are linear least squares problems with Tikhonov regularization, and therefore the associated regularization parameters \(\frac{\lambda _{1}\beta }{2}\), \(\frac{\lambda _{2}\beta }{2}\), and \(\frac{\lambda _{3}\beta }{2}\) can be estimated by using GCV technique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, X. & Ng, M. A cartoon-plus-texture image decomposition model for blind deconvolution. Multidim Syst Sign Process 27, 541–562 (2016). https://doi.org/10.1007/s11045-015-0318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0318-7

Keywords

Navigation