Skip to main content
Log in

A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new numerical strategy to address the extraneous coordinates in the Euler parameters. These parameters are unit quaternions with four variables, which have been used to describe the three rotational degrees-of-freedom (DOF) of a rigid body. This redundancy avoids the singularity issue that appears in the other rotational description methods including, Euler angles (3 parameters), direction cosines (9 parameters), and the Rodrigues parameters (3 parameters). However, these parameters must satisfy a normality constraint. A numerical and online constraint embedding method is invoked to address this holonomic constraint implicitly. It leads to a reduction of the equations of motion to a minimal form. However, the proposed method requires a procedure for the selection of the dependent Euler parameters. Several alternatives were examined and the best one is proposed as the method to use in this situation. They check specific conditions including, condition number of the mass and constraint matrices, to make a decision about retaining or switching the current dependent parameter. The effectiveness of the three different selection algorithms are examined using a 3D double pendulum with ball-and-socket joints. The results show the ability of the proposed strategy to handle drifting and singularity issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andreis, D., Canuto, E.S.: Orbit dynamics and kinematics with full quaternions. In: Proceedings of the 2004 American Control Conference, vol. 4, p. 3660 (2004)

    Google Scholar 

  2. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 3(1), 011005 (2008)

    Article  Google Scholar 

  3. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7, 265–284 (2002). doi:10.1023/A:1015285428885

    Article  MathSciNet  MATH  Google Scholar 

  4. Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64, 86–98 (1994). doi:10.1007/BF00789100

    MATH  Google Scholar 

  5. Bowling, A., Haghshenas-Jaryani, M.: Spatial multibody dynamics of nano-scale motor protein locomotion. In: Proceedings of the 1st International Conference on Bionics and Biomechanics (ICABB) (2010)

    Google Scholar 

  6. Bowling, A., Palmer, A.F.: The small mass assumption applied to the multibody dynamics of motor proteins. J. Biomech. 42(9), 1218–1223 (2009). doi:10.1016/j.jbiomech.2009.03.017, http://www.jbiomech.com/issues

    Article  Google Scholar 

  7. Bowling, A., Palmer, A.F., Wilhelm, L.: Contact and impact in the multibody dynamics of motor protein locomotion. Langmuir 25(22), 12,974–12,981 (2009). http://pubs.acs.org/toc/langd5/0/0

    Article  Google Scholar 

  8. Chou, J.C.K.: Quaternion kinematic and dynamic differential equations. IEEE Trans. Robot. Autom. 8(1), 53 (1992)

    Article  Google Scholar 

  9. Coutsias, E.A., Romero, L.: The quaternions with applications to rigid body dynamics. Tech. rep., Sandia National Laboratories (2004)

  10. Dooley, J.R., McCarthy, J.M.: Spatial rigid body dynamics using dual quaternion components. In: IEEE International Conference on Robotics and Automation. Proceedings, p. 90 (1991)

    Google Scholar 

  11. Gillespie, R.B., Patoglu, V., Hussein, I.I., Westervelt, E.R.: On-line symbolic constraint embedding for simulation of hybrid dynamical systems. Multibody Syst. Dyn. 14(3–4), 387–417 (2005)

    Article  MATH  Google Scholar 

  12. Haghshenas-Jaryani, M., Bowling, A.: Multiscale dynamic modeling of processive motor proteins. In: Proceedings of the IEEE International Conference Robotics and Biomimetics (ROBIO), pp. 1403–1408 (2011)

    Google Scholar 

  13. Haghshenas-Jaryani, M., Bowling, A.: Spatial multibody dynamics of motor proteins. In: Proceedings of Multibody Dynamics 2011, An ECCOMAS Thematic Conference (2011)

    Google Scholar 

  14. de Jalón, J.G., Unda, J., Avello, A., Jiménez, J.M.: Dynamic analysis of three-dimensional mechanisms in “natural” coordinates. J. Mech. Transm. Autom. Des. 109(4), 460–465 (1987). doi:10.1115/1.3258818, http://link.aip.org/link/?JMT/109/460/1

    Article  Google Scholar 

  15. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications, 1st edn. McGraw-Hill, New York (1985)

    Google Scholar 

  16. Kleppmann, M.: Simulation of colliding constrained rigid bodies. Tech. Rep. 683, University of Cambridge (2007)

  17. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics 3(1), 011004 (2008)

    Article  Google Scholar 

  18. Liang, C.G., Lance, G.M.: A differentiable null space method for constrained dynamic analysis. J. Mech. Transm. Autom. Des. 109, 405–411 (1987)

    Article  Google Scholar 

  19. Morton, H.S.: Hamiltonian and Lagrangian formulations of rigid body rotational dynamics based on Euler parameters. J. Astronaut. Sci. 41, 561–591 (1993)

    MathSciNet  Google Scholar 

  20. Nikravesh, P.E., Chung, I.S.: Application of Euler parameters to the dynamic analysis of three dimensional constrained mechanical systems. J. Mech. Des. 104, 785–791 (1982)

    Article  Google Scholar 

  21. Potra, F.A., Yen, J.: Implicit numerical integration for Euler-Lagrange equations via tangent space parametrization*. Mech. Struct. Mach. 19(1), 77–98 (1991). doi:10.1080/08905459108905138, http://www.tandfonline.com/doi/abs/10.1080/08905459108905138

    Article  MathSciNet  Google Scholar 

  22. Ravani, B., Roth, B.: Mappings of spatial kinematics. ASME J. Transm. Autom. Des. 106 (1984)

  23. Singh, R.P., Likins, P.W.: Singular value decomposition for constrained dynamical systems. J. Appl. Mech. 52(4), 943–948 (1985). http://link.aip.org/link/?AMJ/52/943/1

    Article  MathSciNet  MATH  Google Scholar 

  24. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Bowling.

Additional information

This material is based upon work supported by the National Science Foundation under Grant No. MCB-1148541.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghshenas-Jaryani, M., Bowling, A. A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems. Multibody Syst Dyn 30, 185–197 (2013). https://doi.org/10.1007/s11044-012-9333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9333-8

Keywords

Navigation