Skip to main content
Log in

Rigid body dynamics with a scalable body, quaternions and perfect constraints

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a formulation of the quaternion constraint for rigid body rotations in the form of a standard perfect bilateral mechanical constraint, for which the associated Lagrangian multiplier has the meaning of a constraint force. First, the equations of motion of a scalable body are derived. A scalable body has three translational, three rotational, and one uniform scaling degree of freedom. As generalized coordinates, an unconstrained quaternion and a displacement vector are used. To the scalable body, a perfect bilateral constraint is added, restricting the quaternion to unit length and making the body rigid. This way a quaternion based differential algebraic equation (DAE) formulation for the dynamics of a rigid body is obtained, where the 7×7 mass matrix is regular and the unit length restriction of the quaternion is enforced by a mechanical constraint. Finally, the equations of motion in the form of a DAE are linked to the Newton–Euler equations of motion of a rigid body. The rigid body DAE formulation is useful for the construction of (energy) consistent integrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altmann, S.L.: Rotations, Quaternions and Double Groups. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  2. Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Methods Eng. 79, 444–473 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191(3–5), 467–488 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bremer, H.: Dynamik und Regelung mechanischer Systeme. Teubner, Stuttgart (1988)

    MATH  Google Scholar 

  5. Glocker, Ch.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    MATH  Google Scholar 

  6. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamel, G.: Theoretische Mechanik. Springer, Berlin (1967)

    MATH  Google Scholar 

  8. Hamilton, W.R.: On quaternions; or on a new system of imaginaries in algebra. Philos. Mag., 25–36 (1844–1850)

  9. Kuipers, J.B.: Quaternions and Rotation Sequences. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  10. Le Saux, C., Leine, R.I., Glocker, Ch.: Dynamics of a rolling disk in the presence of dry friction. J. Nonlinear Sci. 15(1), 27–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lens, E., Cardona, A., Géradin, M.: Energy preserving time integration for constrained multibody systems. Multibody Syst. Dyn. 11, 41–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Maciejewski, A.J.: Hamiltonian formalism for Euler parameters. Celest. Mech. 37, 47–57 (1985)

    Article  MATH  Google Scholar 

  13. Morton, H.S. Jr.: Hamiltonian and Lagrangian formulations of rigid-body rotational dynamics based on the Euler parameters. J. Astronaut. Sci. 41(4), 569–591 (1993)

    MathSciNet  Google Scholar 

  14. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, London (1988)

    Google Scholar 

  15. Nikravesh, P.E., Chung, I.S.: Application of Euler parameters to the dynamic analysis of three-dimensional constrained mechanical systems. J. Mech. Des. 104, 785–791 (1982)

    Google Scholar 

  16. O’Reilly, O.M., Varadi, P.C.: Hoberman’s sphere, Euler parameters and Lagrange’s equations. J. Elast. 56, 171–180 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  18. Udwadia, F.E., Schutte, A.D.: An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics. J. Appl. Mech. 77(4) (2010)

  19. Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 213, 111–129 (2010)

    Article  MATH  Google Scholar 

  20. Vadali, S.R.: On the Euler parameter constraint. J. Astronaut. Sci. 36(3), 259–265 (1988)

    MathSciNet  Google Scholar 

  21. Ward, J.P.: Quaternions and Cayley Numbers. Kluwer Academic, Dordrecht (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, M., Glocker, C. Rigid body dynamics with a scalable body, quaternions and perfect constraints. Multibody Syst Dyn 27, 437–454 (2012). https://doi.org/10.1007/s11044-011-9276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9276-5

Keywords

Navigation