Skip to main content
Log in

Modified Green–Lindsay analysis of an electro-magneto elastic functionally graded medium with temperature dependency of materials

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This article presents a modified Green–Lindsay (MG-L) thermoelasticity model considering temperature and strain rate. Previously, this model has been developed based on the Green–Lindsay theory of thermoelasticity using strain and temperature rate dependent thermoelastic equations. This study analyzes stress and thermal wave propagation of a functionally graded medium exposed to an electromagnetic field and a thermal shock. All magnetic, elastic, and thermal features of the medium are considered to vary in the longitudinal direction. Additionally, the properties of the material are dependent on the temperature in the form of a cubic function. Using the large displacement formulation and the finite strain theory (FST), nonlinear coupled equations are obtained. Considering FST, strain rate, temperature rate, and temperature dependence of materials leads to a highly nonlinear system of coupled magneto-thermoelastic equations. These equations are solved by employing a combination of the updated finite element method, finite difference, as well as Picard’s iterations. The obtained results show considerable impacts of the strain rate, temperature rate, and temperature dependence of materials on the responses of the nonlinear system. Graphically, the numerical results are presented for displacement, stress, and temperature components under the impact of a magnetic field. Based on the results, the impact of magnetic fields on the responses of FG elastic material heated by a thermal shock is evident. In addition, the stress and the thermal wave speed grow by increasing the volume fraction in the FG structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abbas, I.A., Youssef, H.M.: Finite element analysis of two-temperature generalized magneto-thermoelasticity. Arch. Appl. Mech. 79, 917–925 (2009)

    Article  MATH  Google Scholar 

  • Abd-allaa, A.N., Alshaikh, F., Del Vescovoc, D., et al.: Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J. Therm. Stresses 40, 1079–1092 (2017)

    Article  Google Scholar 

  • Abo Dahab, S.M., Abd-Alla, A.M., Alqarni, A.J.: A two-dimensional problem with rotation and magnetic field in context of four thermoelastic theories. Results Phys. 72, 742–2751 (2017)

    Google Scholar 

  • Allgemeine, T.O.: Theoreme der matematischen Elastizit atslehre (Integrationstheorie). In: Encyklop Adie der Matematischen Wissenschaften, pp. 55–124 (1906)

    Google Scholar 

  • Aminipour, H., Janghorban, M., Li, L.: Wave dispersion in nonlocal anisotropic macro/nanoplates made of functionally graded materials. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2020.1713422

    Article  MATH  Google Scholar 

  • Aminipoura, H., Janghorban, M., Civalek, O.: Analysis of functionally graded doubly-curved shells with different materials via higher order shear deformation theory. Compos. Struct. 251, 112645 (2020)

    Article  Google Scholar 

  • Angaroni, F., Benenti, G., Strini, G.: Applications of Picard and Magnus expansions to the Rabi model. Eur. J. Phys. 188, 9 (2018)

    Google Scholar 

  • Bayones, F.S., Abd-Alla, A.M.: Eigenvalue approach to two dimensional coupled magneto-thermoelasticity in a rotating isotropic medium. Results Phys. 7, 2941–2949 (2017)

    Article  Google Scholar 

  • Behravan Rad, A., Shariyat, M.: Thermo-magneto-elasticity analysis of variable thickness annular FGM plates with asymmetric shear and normal loads and non-uniform elastic foundations. Arch. Civ. Mech. Eng. 16, 448–466 (2016)

    Article  Google Scholar 

  • Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Geophys. 27, 240–253 (1956)

    MathSciNet  MATH  Google Scholar 

  • Biswas, S., Mukhopadhyay, B., Shaw, S.: Thermal shock response in magneto-thermoelastic orthotropic medium with three-phase-lag model. J. Electromagn. Waves Appl. 31, 879–897 (2017)

    Article  Google Scholar 

  • Demir, C., Civalek, O.: A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos. Struct. 168, 872–884 (2017)

    Article  Google Scholar 

  • Esayas, L.S., Kattimani, S.C.: Effect of porosity on active damping of geometrically nonlinear vibrations of a functionally graded magneto-electro-elastic plate. Def. Technol. (2021). https://doi.org/10.1016/j.dt.2021.04.016

    Article  Google Scholar 

  • Eslami, M.R.: Finite Elements Methods in Mechanics p. 370. Springer, Basel (2014)

    Book  MATH  Google Scholar 

  • Fahmy, M.A.: A new boundary element strategy for modeling and simulation of three-temperature nonlinear generalized micropolar-magneto-thermoelastic wave propagation problems in FGA structures. Eng. Anal. Bound. Elem. 108, 192–200 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh, M.K., Generalized, K.M.: Thermoelastic problem of a spherically isotropic infinite elastic medium containing a spherical cavity. J. Therm. Stresses 31, 679 (2008)

    Article  Google Scholar 

  • Guo, H., Su, C., Xiana, J.: Stochastic transient analysis of thermal stresses in solids by explicit time-domain method. Theor. Appl. Mech. Lett. 9, 293–296 (2019)

    Article  Google Scholar 

  • Hajisadeghian, A., Masoumi, A., Parvizi, A.: Investigating the magnetic field effects on thermomechanical stress behavior of thick-walled cylinder with inner FGM layer. J. Therm. Stresses 41, 286–301 (2018)

    Article  Google Scholar 

  • Karami, B., Janghorban, M.: A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeam. Thin-Walled Struct. 143, 106227 (2019)

    Article  Google Scholar 

  • Leseduarte, M.C., Quintanilla, R., Racke, R.: On (non-)exponential decay in generalized thermoelasticity with two temperatures. Appl. Math. Lett. 70, 18–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Lord, H., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  • Mahesh, V., Sagar, P.J., Kattimani, S.C.: Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. J. Intell. Mater. Syst. Struct. 29, 1430–1455 (2017)

    Article  Google Scholar 

  • Manh, T.D., Salehi, F., Shafee, A., et al.: Role of magnetic force on the transportation of nanopowders including radiation. J. Therm. Anal. Calorim. 143, 685–692 (2019)

    Article  Google Scholar 

  • Matle, S.: Elastic wave propagation study in copper poly-grain sample using FEM. Theor. Appl. Mech. Lett. 7, 1–5 (2017)

    Article  Google Scholar 

  • Mirparizi, M., Fotuhi, A.R.: Nonlinear coupled thermo-hyperelasticity analysis of thermal and mechanical wave propagation in a finite domain. Physica A 537, 122755 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirparizi, M., Fotuhi, A.R., Shariyat, M.: Nonlinear coupled thermoelastic analysis of thermal wave propagation in a functionally graded finite solid undergoing finite strain. J. Therm. Anal. Calorim. 139, 2309–2320 (2020)

    Article  Google Scholar 

  • Najibi, A., Talebitooti, R.: Nonlinear transient thermo-elastic analysis of a 2D-FGM thick hollow finite length cylinder. Composites, Part B 111, 211–227 (2017)

    Article  Google Scholar 

  • Nami, M.R., Janghorban, M.: Free vibration of functionally graded size dependent nanoplates based on second order shear deformation theory using nonlocal elasticity theory. Trans. Mech. Eng. 39, 15–28 (2015)

    Google Scholar 

  • Neumann, F.: Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers. Gehalten an der Universität Königsberg, (1885)

  • Nikolarakis, A.M., Theotokoglou, E.E.: Thermal shock problem of a three-layered functionally graded zirconia/titanium alloy strip based on a unified generalized thermoelasticity theory. J. Therm. Stresses 40, 583–602 (2017)

    Article  Google Scholar 

  • Nikolarakis, A.M., Transient, T.E.: Analysis of a functionally graded ceramic/metal layer considering Lord-Shulman theory. Math. Probl. Eng. 2018, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  • Othman, M.I., Hasona, W.M., Mansour, N.T.: The effect of magnetic field on generalized thermoelastic medium with two temperature under three phase lag model. Multidiscip. Model. Mater. Struct. 11, 579–597 (2015)

    Google Scholar 

  • Puri, P.: Plane waves in thermoelasticity and magneto- thermoelasticity. Int. J. Eng. Sci. 10, 467–476 (1972)

    Article  MATH  Google Scholar 

  • Rafiq, M., Singh, B., et al.: Harmonic waves solution in dual-phase-lag magneto-thermoelasticity. Open Phys. (2019). https://doi.org/10.1515/phys-2019-0002

    Article  Google Scholar 

  • Reddy, J.N., Chin, C.B.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stresses 21, 593–626 (2007)

    Article  Google Scholar 

  • Reddy, G., Raju, R.S., Rao, J.A.: Influence of viscous dissipation on unsteady MHD natural convective flow of Casson fluid over an oscillating vertical plate via FEM. Ain Shams Eng. J. 9, 1907–1915 (2018)

    Article  Google Scholar 

  • Sarkar, N., De, S., Modified, S.N.: Green–Lindsay model on the reflection and propagation of thermoelastic plane waves at an isothermal stress-free surface. Indian J. Phys. 94, 1215–1225 (2019)

    Article  Google Scholar 

  • Shakeriaski, F., Ghodrat, M.: The nonlinear response of Cattaneo-type thermal loading of a laser pulse on a medium using the generalized thermoelastic model. Theor. Appl. Mech. Lett. 10, 286–297 (2020a)

    Article  Google Scholar 

  • Shakeriaski, F., Ghodrat, M.: Nonlinear response for a general form of thermoelasticity equation in mediums under the effect of temperature-dependent properties and short-pulse heating. J. Therm. Anal. Calorim. 10, 286–297 (2020b)

    Google Scholar 

  • Shakeriaski, F., Ghodrat, M., Escobedo-Diaz, J., et al.: Modified Green–Lindsay thermoelasticity wave propagation in elastic materials under thermal shocks. J. Comput. Des. Eng. 8, 36–54 (2021a)

    Google Scholar 

  • Shakeriaski, F., Ghodrat, M., Escobedo-Diaz, J., et al.: Recent advances in generalized thermoelasticity theory and the modified models: a review. J. Comput. Des. Eng. 8, 15–35 (2021b)

    Google Scholar 

  • Shariyat, M., Khaghani, M., Lavasani, S.M.H.: Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties. Eur. J. Mech. A, Solids 29, 378–391 (2010a)

    Article  MATH  Google Scholar 

  • Shariyat, M., Lavasani, S.M.H., Khaghani, M.: Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method. Appl. Math. Model. 34, 898–918 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Shariyat, M., Jahanshahi, S., Rahimi, H.: Nonlinear Hermitian generalized hygrothermoelastic stress and wave propagation analyses of thick FGM spheres exhibiting temperature, moisture, and strain-rate material dependencies. Compos. Struct. 229, 111364 (2019)

    Article  Google Scholar 

  • Shishesaz, M., Zakipour, A., Magneto-Elastic, J.A.: Analysis of an annular FGM plate, based on classical plate theory using GDQ method. Lat. Am. J. Solids Struct. 13, 2736–2762 (2016)

    Article  Google Scholar 

  • Shivay, O.N., Mukhopadhyay, S.: A complete Galerkin’s type approach of finite element for the solution of a problem on modified Green-Lindsay thermoelasticity for a functionally graded hollow disk. Eur. J. Mech. A, Solids 80, 2020–103914 (2019)

    MathSciNet  MATH  Google Scholar 

  • Swaminathan, K., Sangeetha, D.M.: Thermal analysis of FGM plates – a critical review of various modelling techniques and solution methods. Compos. Struct. 160, 43–60 (2017)

    Article  Google Scholar 

  • Valipour, P., Aski, F.S., Mirparizi, M.: Influence of magnetic field on CNT-polyethylene nanofluid flow over a permeable cylinder. J. Mol. Liq. 225, 592–597 (2017)

    Article  Google Scholar 

  • Valipour, P., Jafaryar, M., Moradi, R., et al.: Two phase model for nanofluid heat transfer intensification in a rotating system under the effect of magnetic field. Chem. Eng. Process. 123, 47–57 (2018)

    Article  Google Scholar 

  • Vinyas, M., Harursampath, D., Kattimani, S.C.: Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory. Struct. Eng. Mech. 73, 667–684 (2020)

    Google Scholar 

  • Yang, X., Liu, Y.: Picard iterative processes for initial value problems of singular fractional differential equations. Adv. Differ. Equ. 102 (2014). https://doi.org/10.1186/1687-1847-2014-102

  • Youssef, H.M.: Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with spherical cavity. Appl. Math. Mech. 26, 470–475 (2005)

    Article  MATH  Google Scholar 

  • Youssef, H.M., Lehaibi, E.: State-space approach of two-temperature generalized thermoelasticity. Int. J. Solids Struct. 44, 1550–1562 (2007)

    Article  MATH  Google Scholar 

  • Yu, J.Y., Tian, X.-G., Liu, X.-R.: Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. Eur. J. Mech. A, Solids 51, 96–106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, Y.J., Xue, Z., Tian, X.: A modified Green–Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica 53, 2543–2554 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zarmehri, N.R., Nazari, B.M., Mahdizadeh Rokhi, M.: XFEM analysis of a 2D cracked finite domain under thermal shock based on Green-Lindsay theory. Eng. Fract. Mech. 191, 286–299 (2018)

    Article  Google Scholar 

  • Zenkour, A.M.: Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis. Acta Mech. 229, 3671–3692 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Mirparizi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirparizi, M., Razavinasab, S.M. Modified Green–Lindsay analysis of an electro-magneto elastic functionally graded medium with temperature dependency of materials. Mech Time-Depend Mater 26, 871–890 (2022). https://doi.org/10.1007/s11043-021-09517-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09517-w

Keywords

Navigation