Skip to main content
Log in

Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower \(T_{g}\). The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arrhenius, S.: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889)

    Google Scholar 

  • Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  MATH  Google Scholar 

  • Boothby, J.M., Kim, H., Ware, T.H.: Shape changes in chemoresponsive liquid crystal elastomers. Sens. Actuators B, Chem. 240, 511–518 (2017)

    Article  Google Scholar 

  • Bower, D.I.: An Introduction to Polymer Physics. Cambridge University Press, New York (2002), xx, 444 pp.

    Book  Google Scholar 

  • Chen, Y.C., Lagoudas, D.C.: A constitutive theory for shape memory polymers. Part I—Large deformations. J. Mech. Phys. Solids 56, 1752–1765 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Chevellard, G., Ravi-Chandar, K., Liechti, K.M.: Modeling the nonlinear viscoelastic behavior of polyurea using a distortion modified free volume approach. Mech. Time-Depend. Mater. 16, 181–203 (2012)

    Article  Google Scholar 

  • Diani, J., Liu, Y.P., Gall, K.: Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym. Eng. Sci. 46, 486–492 (2006)

    Article  Google Scholar 

  • Diani, J., Gilormini, P., Frédy, C., Rousseau, I.: Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int. J. Solids Struct. 49, 793–799 (2012)

    Article  Google Scholar 

  • Doolittle, A.K.: Studies in Newtonian flow. II. The dependence of the viscosity of liquids on freespace. J. Appl. Mech. 22, 1471–1475 (1951)

    Google Scholar 

  • Doolittle, A.K.: Studies on Newtonian flow. V. Further verification of the free-space viscosity equation. J. Appl. Mech. 28, 901–905 (1957)

    Google Scholar 

  • Doolittle, A.K., Doolittle, D.B.: Studies in Newtonian flow. V. Further verification of the free-space viscosity equation. J. Appl. Phys. 28, 901–905 (1957)

    Article  MATH  Google Scholar 

  • Du, H., Zhang, J.: Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6, 3370 (2010)

    Article  Google Scholar 

  • Ferry, J.: Viscoelastic Properties of Polymers. Wiley, New York (1961), 482 pp.

    Book  Google Scholar 

  • Francis, W.H., Lake, M.S., Schultz, M.R., Campbell, D., Dunn, M.L., Qi, H.J.: Elastic memory composite microbuckling mechanics: closed-form model with empirical correlation. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii (2007)

    Google Scholar 

  • Gall, K., Yakacki, C.M., Liu, Y.P., Shandas, R., Willett, N., Anseth, K.S.: Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res., Part A 73A, 339–348 (2005)

    Article  Google Scholar 

  • Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Article  Google Scholar 

  • He, J., Zhao, Y., Zhao, Y.: Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Matter 5, 308–310 (2009)

    Article  Google Scholar 

  • Huang, W.M., Yang, B., An, L., Li, C., Chan, Y.S.: Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86, 114105 (2005)

    Article  Google Scholar 

  • Knauss, W.G., Emri, I.J.: Non-linear viscoelasticity based on free-volume consideration. Comput. Struct. 13, 123–128 (1981)

    Article  MATH  Google Scholar 

  • Knauss, W.G., Emri, I.: Volume change and the nonlinearly thermoviscoelastic constitution of polymers. Polym. Eng. Sci. 27, 86–100 (1987)

    Article  Google Scholar 

  • Lakes, R.S., Wineman, A.: On Poisson’s ratio in linearly viscoelastic solids. J. Elast. 85, 45–63 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lendlein, A., Kelch, S.: Shape-memory polymers. Angew. Chem., Int. Ed. Engl. 41, 2035–2057 (2002)

    Google Scholar 

  • Lendlein, A., Kelch, S.: Shape-memory polymers as stimuli-sensitive implant materials. Clin. Hemorheol. Microcirc. 32, 105–116 (2005)

    Google Scholar 

  • Lendlein, A., Langer, R.: Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)

    Article  Google Scholar 

  • Lendlein, A., Jiang, H., Jünger, O., Langer, R.: Light-induced shape-memory polymers. Nature 434, 879–882 (2005)

    Article  Google Scholar 

  • Liu, C., Qin, H., Mather, P.T.: Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007)

    Article  Google Scholar 

  • Lu, H., Knauss, W.G.: The role of dilatation in the nonlinearly viscoelastic behavior of PMMA under multiaxial stress states. Mech. Time-Depend. Mater. 2, 307–334 (1999)

    Article  Google Scholar 

  • Luo, X., Mather, P.T.: Triple-Shape Polymeric Composites (TSPCs). Adv. Funct. Mater. 20, 2649–2656 (2010)

    Article  Google Scholar 

  • Mather, P.T., Luo, X.F., Rousseau, I.A.: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445–471 (2009)

    Article  Google Scholar 

  • Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A.: Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. USA 103, 3540–3545 (2006)

    Article  Google Scholar 

  • Nagata, M., Yamamoto, Y.: Photocurable shape-memory copolymers of epsilon-caprolactone and L-lactide. Macromol. Chem. Phys. 211, 1826–1835 (2010)

    Article  Google Scholar 

  • Nguyen, T., Jerryqi, H., Castro, F., Long, K.: A thermoviscoelastic model for amorphous shape memory polymers: incorporating structural and stress relaxation. J. Mech. Phys. Solids 56, 2792–2814 (2008)

    Article  MATH  Google Scholar 

  • Nguyen, T.D., Yakacki, C.M., Brahmbhatt, P.D., Chambers, M.L.: Modeling the relaxation mechanisms of amorphous shape memory polymers. Adv. Mater. 22, 3411–3423 (2010)

    Article  Google Scholar 

  • Odowd, N.P., Knauss, W.G.: Time-dependent large principal deformation of polymers. J. Mech. Phys. Solids 43, 771–792 (1995)

    Article  MATH  Google Scholar 

  • Ortega, A.M., Kasprzak, S.E., Yakacki, C.M., Diani, J., Greenberg, A.R., Gall, K.: Structure-property relationships in photopolymerizable polymer networks: effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559–1572 (2008)

    Article  Google Scholar 

  • Popelar, C.F., Liechti, K.M.: A distortion-modified free volume theory for nonlinear viscoelastic behavior. Mech. Time-Depend. Mater. 7, 89–141 (2003)

    Article  Google Scholar 

  • Qi, H., Boyce, M.: Constitutive model for stretch-induced softening of the stress–stretch behavior of elastomeric materials. J. Mech. Phys. Solids 52, 2187–2205 (2004)

    Article  MATH  Google Scholar 

  • Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, Oxford (2003)

    Google Scholar 

  • Schmidt, A.M.: Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol. Rapid Commun. 27, 1168–1172 (2006)

    Article  Google Scholar 

  • Sherrod, P.H.: Nonlinear Regression Analysis Program, NLREG Version 5.0 (2000). Available from http://www.nlreg.com/

  • Srivastava, V., Chester, S.A., Anand, L.: Thermally actuated shape-memory polymers: experiments, theory, and numerical simulations. J. Mech. Phys. Solids 58, 1100–1124 (2010)

    Article  MATH  Google Scholar 

  • Tschoegl, N.W., Knauss, W.G., Emri, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002)

    Article  Google Scholar 

  • Westbrook, K.K., Kao, P.H., Castro, F., Ding, Y., Qi, H.J.: A 3D finite deformation constitutive model for amorphous shape memory polymers: a multi-branch modeling approach for nonequilibrium relaxation processes. Mech. Mater. 43(12), 853–869 (2011)

    Article  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  • Xiao, R., Nguyen, T.D.: Modeling the solvent-induced shape-memory behavior of glassy polymers. Soft Matter 9, 9455–9464 (2013)

    Article  Google Scholar 

  • Xiao, R., Nguyen, T.D.: An effective temperature theory for the nonequilibrium behavior of amorphous polymers. J. Mech. Phys. Solids 82, 62–81 (2015)

    Article  MathSciNet  Google Scholar 

  • Xie, T.: Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010)

    Article  Google Scholar 

  • Xie, T., Page, K.A., Eastman, S.A.: Strain-based temperature memory effect for nafion and its molecular origins. Adv. Funct. Mater. 21, 2057–2066 (2011)

    Article  Google Scholar 

  • Yakacki, C.M., Shandas, R., Lanning, C., Rech, B., Eckstein, A., Gall, K.: Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28, 2255–2263 (2007)

    Article  Google Scholar 

  • Yakacki, C.M., Satarkar, N.S., Gall, K., Likos, R., Hilt, J.Z.: Shape-memory polymer networks with Fe(3)O(4) nanoparticles for remote activation. J. Appl. Polym. Sci. 112, 3166–3176 (2009)

    Article  Google Scholar 

  • Yu, K., Qi, H.J.: Temperature memory effect in amorphous shape memory polymers. Soft Matter 10, 9423–9432 (2014)

    Article  Google Scholar 

  • Yu, K., Xie, T., Leng, J., Ding, Y., Qi, H.J.: Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter 8, 5687–5695 (2012)

    Article  Google Scholar 

  • Yu, K., Ge, Q., Qi, H.J.: Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers. Nat. Commun. 5, 3066 (2014a)

    Article  Google Scholar 

  • Yu, K., McClung, A.J., Tandon, G.P., Baur, J.W., Qi, H.J.: A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mech. Time-Depend. Mater. 18, 453–474 (2014b)

    Article  Google Scholar 

  • Yu, K., Ritchie, A., Mao, Y., Dunn, M.L., Qi, H.J.: Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Proc. IUTAM 12, 193–203 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanzon, D.W., Lu, H., Yakacki, C.M. et al. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation. Mech Time-Depend Mater 23, 1–21 (2019). https://doi.org/10.1007/s11043-018-9376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-018-9376-1

Keywords

Navigation