Skip to main content
Log in

Transient behaviour of branched polymer melts through planar abrupt and rounded contractions using pom–pom models

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this paper, we study the transient flow of branched polymer melts with contrasting shear and elongational properties in planar 4:1 abrupt and rounded-corner contractions. This includes Single and Double Extended forms of the Pom–Pom model (SXPP and DXPP), comparing the transient behaviour for these two different models. With the DXPP version, the evolution of the molecular-chain backbone stretch (λ) is described by a dynamic equation, whilst in the SXPP form, stretch is an instantaneous algebraic function of the stress tensor (τ). Simulations are performed with a hybrid finite volume/element algorithm. The momentum and continuity equations are solved by a Taylor–Galerkin/pressure-correction finite element method, whilst the constitutive equation is dealt with by a cell-vertex finite volume algorithm. We demonstrate some novel features due to the influence and imposition of realistic transient boundary conditions on evolutionary flow-structure. The different effects of various model parameter choices are also exposed through transient field response in principle stress difference fringe patterns, rates of deformation, first and second normal stress difference, stress and stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Symbol:

Name

U :

fluid velocity

p :

hydrodynamic pressure

τ :

extra-stress

t:

time

d :

rate of deformation tensor

I :

unit tensor

\(\mathop{\boldsymbol{\tau}} \limits^{\nabla}\) :

upper-convected material derivative of τ

Re :

Reynolds number

We :

Weissenberg number

U :

characteristic velocity

L 0 :

characteristic length

ρ :

fluid density

μ :

fluid viscosity

μ p :

Polymeric component

μ s :

Newtonian solvent component

β :

solvent fraction ratio

q :

number of side-branch arms

ε :

system entanglement

λ :

stretch of back-bone segment

α :

anisotropy parameter

λ 0b :

backbone-orientation relaxation time

λ 0s :

backbone-stretch relaxation time

G 0 :

linear relaxation modulus

N 1 :

first normal stress difference

N 2 :

second normal stress difference

\(\dot{\gamma}\) :

shear-rate

\(\dot{\varepsilon}\) :

extension-rate

References

  • Aboubacar, M., Webster, M.F.: A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows. J. Non-Newton. Fluid Mech. 98, 83–106 (2001)

    Article  MATH  Google Scholar 

  • Aboubacar, M., Matallah, H., Webster, M.F.: Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: planar contraction flows. J. Non-Newton. Fluid Mech. 103, 65–103 (2002)

    Article  MATH  Google Scholar 

  • Aguayo, J.P., Tamaddon-Jahromi, H.R., Webster, M.F.: Extensional response of the pom-pom model through planar contraction flows for branched polymer melts. J. Non-Newton. Fluid Mech. 134, 105–126 (2006)

    Article  MATH  Google Scholar 

  • Aguayo, J.P., Phillips, P.M., Phillips, T.N., Tamaddon-Jahromi, H.R., Snigerev, B.A., Webster, M.F.: The numerical prediction of planar viscoelastic flows using the pom-pom model and high-order finite volume schemes. J. Comput. Phys. 220, 586–611 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Baloch, A., Webster, M.F.: A computer simulation of complex flows of fibre suspensions. Comput. Fluids 24, 135–151 (1995)

    Article  MATH  Google Scholar 

  • Baltussen, M.G.H.M., Verbeeten, W.M.H., Bogaerds, A.C.B., Hulsen, M.A., Peters, G.W.M.: Anisotropy parameter restrictions for the extended pom–pom model. J. Non-Newtonian Fluid Mech. 165(19–20), 1047–1055 (2010)

    Article  Google Scholar 

  • Belblidia, F., Keshtiban, I.J., Webster, M.F.: Stabilised computations for viscoelastic flows under compressible implementations. J. Non-Newton. Fluid Mech. 134, 56–76 (2006)

    Article  MATH  Google Scholar 

  • Bishko, G.B., Harlen, O.G., McLeish, T.C.B., Nicholson, T.M.: Numerical simulation of the transient flow of branched polymer melts through a planar contraction using the ‘pom–pom’ model. J. Non-Newton. Fluid Mech. 82, 255–273 (1999)

    Article  MATH  Google Scholar 

  • Blackwell, R.J., McLeish, T.C.B., Harlen, O.G.: Molecular drag-strain coupling in branched polymer melts. J. Rheol. 44, 121–136 (2000)

    Article  Google Scholar 

  • Bogaerds, A.C.B., Grillet, A.M., Peters, G.W.M., Baaijens, F.P.T.: Stability analysis of polymer shear flows using the extended pom–pom constitutive equations. J. Non-Newton. Fluid Mech. 108, 187–208 (2002)

    Article  MATH  Google Scholar 

  • Clemeur, N., Rutgers, R.P.G., Debbaut, B.: Numerical simulation of abrupt contraction flows using double convected pom–pom model. J. Non-Newton. Fluid Mech. 123, 105–120 (2004)

    Article  MATH  Google Scholar 

  • Clemeur, N., Rutgers, R.P.G., Debbaut, B.: On the evaluation of some differential formulations for the pom–pom constitutive model. Rheol. Acta 42, 217–231 (2003)

    Google Scholar 

  • Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1986)

    Google Scholar 

  • Donea, J.: Taylor-Galerkin method for convective transport problems. Int. J. Numer. Methods Eng. 20, 101–119 (1984)

    Article  MATH  Google Scholar 

  • Hawken, D.M., Tamaddon-Jahromi, H.R., Townsend, P., Webster, M.F.: A Taylor-Galerkin based algorithm for viscous incompressible flow. Int. J. Numer. Methods Fluids 10, 327–351 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Inkson, N.J., McLeish, T.C.B., Harlen, O.G., Groves, D.J.: Predicting low density polyethylene melt rheology in elongational and shear flows with “pom–pom” constitutive equations. J. Rheol. 43, 873–896 (1999)

    Article  Google Scholar 

  • Inkson, N.J., Phillips, T.N.: Unphysical phenomena associated with the extended pom–pom model in steady flow. J. Non-Newton. Fluid Mech. 145(2–3), 92–101 (2007)

    Article  MATH  Google Scholar 

  • Inkson, N.J., Phillips, T.N., van Os, R.G.M.: Numerical simulation of flow past a cylinder using models of XPP type. J. Non-Newton. Fluid Mech. 159, 7–20 (2009)

    Article  Google Scholar 

  • Keshtiban, I.J., Bumroong, P., Tamaddon-Jahromi, H.R., Webster, M.F.: Generalised approach for transient computation of start-up pressure-driven viscoelastic flow. J. Non-Newton. Fluid Mech. 151, 2–20 (2008)

    Article  MATH  Google Scholar 

  • MacLeish, T.C.B.R., Larson, G.: Molecular constitutive equations for a class of branched polymers: The pom–pom polymer. J. Rheol. 42, 81–110 (1998)

    Article  Google Scholar 

  • Matallah, H., Townsend, P., Webster, M.F.: Recovery and stress-splitting schemes for viscoelastic flows. J. Non-Newton. Fluid Mech. 75, 139–166 (1998)

    Article  MATH  Google Scholar 

  • Öttinger, H.C.: Thermodynamic admissibility of the pompom model for branched polymers. Rheol. Acta 40, 317–321 (2001)

    Article  Google Scholar 

  • Tanner, R.I., Nasseri, S.: Simple constitutive models for linear and branched polymers. J. Non-Newton. Fluid Mech. 116, 1–17 (2003)

    Article  MATH  Google Scholar 

  • Tamaddon-Jahromi, H.R., Webster, M.F., Walters, K.: Predicting numerically the large increases in extra pressure drop when Boger fluids flow through axisymmetric contractions. J. Natural. Science 2, 1–11 (2010)

    Google Scholar 

  • Van Meerveld, J.: Note on thermodynamic consistency of the integral pompom model. J. Non-Newton. Fluid Mech. 108, 291–299 (2002)

    Article  MATH  Google Scholar 

  • Verbeeten, W.M.H., Peters, G.W.M., Baaijens, F.T.P.: Differential constitutive equations for polymer melts: the extended Pom-Pom model. J. Rheol. 45, 823–843 (2001)

    Article  Google Scholar 

  • Verbeeten, W.M.H., Peters, G.W.M., Baaijens, F.T.P.: Viscoelastic analysis of complex polymer melt flows using the extended pom-pom model. J. Non-Newton. Fluid Mech. 108, 301–326 (2002)

    Article  MATH  Google Scholar 

  • Verbeeten, W.M.H., Peters, G.W.M., Baaijens, F.T.P.: Numerical simulations of the planar contraction flow for a polyethylene melt using the XPP model. J. Non-Newton. Fluid Mech. 117, 73–84 (2004)

    Article  MATH  Google Scholar 

  • Wapperom, P., Webster, M.F.: Second-order hybrid finite-element/volume method for viscoelastic flows. J. Non-Newton. Fluid Mech. 79, 405–431 (1998)

    Article  MATH  Google Scholar 

  • Wapperom, P., Webster, M.F.: Simulation for viscoelastic flow by a finite volume/element method. Comput. Methods Appl. Mech. Eng. 180, 281–304 (1999)

    Article  MATH  Google Scholar 

  • Wapperom, P., Keunings, R.: Numerical simulation of branched polymer melts in transient complex flowusing pom-pom models. J. Non-Newton. Fluid Mech. 97, 267–281 (2001)

    Article  MATH  Google Scholar 

  • Webster, M.F., Tamaddon-Jahromi, H.R., Aboubacar, M.: Transient viscoelastic flows in planar contractions. J. Non-Newton. Fluid Mech. 118, 83–101 (2004)

    Article  MATH  Google Scholar 

  • Webster, M.F., Tamaddon-Jahromi, H.R., Aboubacar, M.: Time-dependent algorithm for viscoelastic flow-finite element/volume schemes. Numer. Methods Partial Differ. Equ. 21, 272–296 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C., Morgan, K., Peraire, J., Vandati, M., Läohner, R.: Finite elements for compressible gas flow and similar systems. In: 7th Int. Conf. Comput. Meth. Appl. Sci. Eng. Versailles, France (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaddon Jahromi, H.R., Webster, M.F. Transient behaviour of branched polymer melts through planar abrupt and rounded contractions using pom–pom models. Mech Time-Depend Mater 15, 181–211 (2011). https://doi.org/10.1007/s11043-010-9130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-010-9130-9

Keywords

Navigation