Skip to main content
Log in

Image splicing forgery detection: A review

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image splicing forgery is a prevalent form of digital image manipulation where various portions from one or multiple images are combined to create a deceptive image that appears genuine. Detecting image splicing forgery is crucial for verifying the authenticity of an image. Image splicing forgery detection has grown significantly in recent years, with numerous detection approaches proposed in the literature. This paper presents a comprehensive survey and classification of existing image splicing forgery detection approaches, focusing on 2014 to 2023. This study reviews 88 research papers on splicing in the context of image forgery detection. A generalized structure is introduced, outlining the typical stages involved in the detection process. The paper thoroughly reviews the literature, providing an overview of both hand-crafted and advanced detection approaches researchers propose. Benchmark datasets are identified, including their limitations. The objective is to provide a clear and comprehensive understanding of image splicing forgery detection for researchers and practitioners interested in this area. This survey is a valuable resource, offering insights into the field’s current state and highlighting areas for future research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

It is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Rep. Paul A. Gosar tweets fake image of Obama with the Iranian President - The Washington Post. [Online]. Available: https://www.washingtonpost.com/politics/2020/01/06/gop-congressman-tweeted-fake-image-obama-with-iranian-president-they-never-met/. Accessed 4 Oct 2023

  2. Farid H (2009) Image forgery detection. IEEE Signal Process Mag 26(2):16–25. https://doi.org/10.1109/MSP.2008.931079

    Article  ADS  Google Scholar 

  3. Mahdian B, Saic S (2010) A bibliography on blind methods for identifying image forgery. Signal Process Image Commun 25(6):389–399. https://doi.org/10.1016/j.image.2010.05.003

    Article  Google Scholar 

  4. Birajdar GK, Mankar VH (2013) Digital image forgery detection using passive techniques: A survey. Digit Investig 10(3):226–245. https://doi.org/10.1016/j.diin.2013.04.007

    Article  Google Scholar 

  5. Qureshi MA, Deriche M (2015) A bibliography of pixel-based blind image forgery detection techniques. Signal Process Image Commun 39:46–74. https://doi.org/10.1016/j.image.2015.08.008

    Article  Google Scholar 

  6. Panda S, Mishra M (2018) Passive techniques of digital image forgery detection: developments and challenges. In: Advances in Electronics, Communication and Computing: ETAEERE-2016 (pp 281–290). Springer Singapore. https://doi.org/10.1007/978-981-10-4765-7_29

  7. Meena KB, Tyagi V (2019) Image forgery detection: survey and future directions. Data, Engineering and Applications: 2:163–194. https://doi.org/10.1007/978-981-13-6351-1_14

    Article  Google Scholar 

  8. Barad ZJ, Goswami MM (2020) Image forgery detection using deep learning: a survey. In: 2020 6th international conference on advanced computing and communication systems (ICACCS) (pp 571–576). IEEE. https://doi.org/10.1109/ICACCS48705.2020.9074408

  9. Kaur G, Singh N, Kumar M (2023) Image forgery techniques: a review. Artif Intell Rev 56(2):1577–1625. https://doi.org/10.1007/s10462-022-10211-7

    Article  Google Scholar 

  10. Geradts Z, Filius N, Ruifrok A (2020) Interpol review of imaging and video 2016–2019. Forensic Sci Int Synergy 2:540–562. https://doi.org/10.1016/j.fsisyn.2020.01.017

    Article  PubMed  Google Scholar 

  11. Asghar K, Habib Z, Hussain M (2017) Copy-move and splicing image forgery detection and localization techniques: a review. Aust J Forensic Sci 49(3):281–307. https://doi.org/10.1080/00450618.2016.1153711

    Article  Google Scholar 

  12. Zanardelli M, Guerrini F, Leonardi R, Adami N (2023) Image forgery detection: a survey of recent deep-learning approaches. Multimed Tools Appl 82(12):17521–17566. https://doi.org/10.1007/s11042-022-13797-w

    Article  Google Scholar 

  13. Sharma P, Kumar M, Sharma H (2023) Comprehensive analyses of image forgery detection methods from traditional to deep learning approaches: an evaluation. Multimed Tools Appl 82(12):18117–18150. https://doi.org/10.1007/s11042-022-13808-w

    Article  PubMed  Google Scholar 

  14. Cozzolino D, Poggi G, Verdoliva L (2015) Splicebuster: a new blind image splicing detector. In: 2015 IEEE International Workshop on Information Forensics and Security (WIFS) (pp 1–6). IEEE. https://doi.org/10.1109/WIFS.2015.7368565

  15. Kumari R, Garg H (2023) An Image Copy-Move Forgery Detection based on SURF and Fourier-Mellin Transforms. In: 2023 International Conference on Artificial Intelligence and Smart Communication (AISC) (pp 515–519). IEEE. https://doi.org/10.1109/AISC56616.2023.10085429

  16. Kumari R, Garg H, Chawla S (2023) Two-Stage Model for Copy-Move Forgery Detection. In: Computational Intelligence for Engineering and Management Applications: Select Proceedings of CIEMA 2022 (pp 831–844). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-8493-8_62

  17. 2017 Iranian presidential election, Wikipedia. Jun. 01, 2023. Accessed: Oct. 04, 2023. [Online]. Available: https://en.wikipedia.org/w/index.php?title=2017_Iranian_presidential_election&oldid=1158014944

  18. Yang B, Sun X, Chen X, Zhang J, Li X (2015) Exposing photographic splicing by detecting the inconsistencies in shadows. Comput J 58(4):588–600. https://doi.org/10.1093/comjnl/bxu146

    Article  Google Scholar 

  19. Bahrami K, Kot AC, Li L, Li H (2015) Blurred image splicing localization by exposing blur type inconsistency. IEEE Trans Inf Forensics Secur 10(5):999–1009. https://doi.org/10.1109/TIFS.2015.2394231

    Article  Google Scholar 

  20. Rao MP, Rajagopalan AN, Seetharaman G (2014) Harnessing motion blur to unveil splicing. IEEE Trans Inf Forensics Secur 9(4):583–595. https://doi.org/10.1109/TIFS.2014.2302895

    Article  Google Scholar 

  21. Kakar P, Sudha N, Ser W (2011) Exposing digital image forgeries by detecting discrepancies in motion blur. IEEE Trans Multimed 13(3):443–452. https://doi.org/10.1109/TMM.2011.2121056

    Article  Google Scholar 

  22. Diallo B, Urruty T, Bourdon P, Fernandez-Maloigne C (2020) Robust forgery detection for compressed images using CNN supervision. Forensic Sci Int Rep 2:100112. https://doi.org/10.1016/j.fsir.2020.100112

    Article  Google Scholar 

  23. Liu Q, Sung AH (2009) A new approach for JPEG resize and image splicing detection. In: Proceedings of the First ACM workshop on Multimedia in forensics (pp 43–48). https://doi.org/10.1145/1631081.1631092

  24. Kwon M-J, Nam S-H, Yu I-J, Lee H-K, Kim C (2022) Learning JPEG compression artifacts for image manipulation detection and localization. Int J Comput Vis 130(8):1875–1895. https://doi.org/10.1007/s11263-022-01617-5

    Article  Google Scholar 

  25. Kwon MJ, Yu IJ, Nam SH, Lee HK (2021) CAT-Net: Compression artifact tracing network for detection and localization of image splicing. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 375–384). https://doi.org/10.1109/WACV48630.2021.00042

  26. Zhu N, Shen J, Niu X (2019) Double JPEG compression detection based on noise-free DCT coefficients mixture histogram model. Symmetry 11(9):1119. https://doi.org/10.3390/sym11091119

    Article  ADS  Google Scholar 

  27. Armas Vega EA, Gonzalez Fernandez E, Sandoval Orozco AL, Garcia Villalba LJ (2020) Passive image forgery detection based on the demosaicing algorithm and JPEG compression. IEEE Access 8:11815–11823. https://doi.org/10.1109/ACCESS.2020.2964516

    Article  Google Scholar 

  28. Park CW, Moon YH, Eom IK (2021) Image tampering localization using demosaicing patterns and singular value based prediction residue. IEEE Access 9:91921–91933. https://doi.org/10.1109/ACCESS.2021.3091161

    Article  Google Scholar 

  29. Wang W, Dong J, Tan T (2009) Effective image splicing detection based on image chroma. In 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt: IEEE 1257–1260. https://doi.org/10.1109/ICIP.2009.5413549

  30. Chen Y, Retraint F, Qiao T (2022) Image splicing forgery detection using simplified generalized noise model. Signal Process Image Commun 107:116785. https://doi.org/10.1016/j.image.2022.116785

    Article  Google Scholar 

  31. Pun C-M, Liu B, Yuan X-C (2016) Multi-scale noise estimation for image splicing forgery detection. J Vis Commun Image Represent 38:195–206. https://doi.org/10.1016/j.jvcir.2016.03.005

    Article  Google Scholar 

  32. Liu B, Pun C-M (2020) Locating splicing forgery by adaptive-SVD noise estimation and vicinity noise descriptor. Neurocomputing 387:172–187. https://doi.org/10.1016/j.neucom.2019.12.105

    Article  Google Scholar 

  33. Julliand T, Nozick V, Talbot H (2015) Automated image splicing detection from noise estimation in raw images. In: 6th International Conference on Imaging for Crime Prevention and Detection (ICDP-15) (pp. 1–6). IET. https://doi.org/10.1049/ic.2015.0111

  34. Jalab HA, Alqarni MA, Ibrahim RW, Ali Almazroi A (2022) A novel pixel’s fractional mean-based image enhancement algorithm for better image splicing detection. J King Saud Univ - Sci 34(2):101805. https://doi.org/10.1016/j.jksus.2021.101805

    Article  Google Scholar 

  35. Moghaddasi Z, Jalab HA, Noor RMd (2019) Image splicing forgery detection based on low-dimensional singular value decomposition of discrete cosine transform coefficients. Neural Comput Appl 31(11):7867–7877. https://doi.org/10.1007/s00521-018-3586-y

    Article  Google Scholar 

  36. Kaur N, Jindal N, Singh K (2021) Efficient hybrid passive method for the detection and localization of copy-move and spliced images. Turk J Electr Eng Comput Sci 29(2):561–582. https://doi.org/10.3906/elk-2001-138

    Article  Google Scholar 

  37. Sheng H, Shen X, Shi Z (2018) Image Splicing Detection Based on the Q-Markov Features. In: Advances in Multimedia Information Processing–PCM 2018: 19th Pacific-Rim Conference on Multimedia, Hefei, China, September 21-22, 2018, Proceedings, Part II 19 (pp. 453–464). Springer International Publishing. https://doi.org/10.1007/978-3-030-00767-6_42

  38. Gani G, Qadir F (2020) A robust copy-move forgery detection technique based on discrete cosine transform and cellular automata. J Inf Secur Appl 54:102510. https://doi.org/10.1016/j.jisa.2020.102510

    Article  Google Scholar 

  39. Mehta R, Aggarwal K, Koundal D, Alhudhaif A, Polat K (2021) Markov features based DTCWS algorithm for online image forgery detection using ensemble classifier in the pandemic. Expert Syst Appl 185:115630. https://doi.org/10.1016/j.eswa.2021.115630

    Article  Google Scholar 

  40. Jaiprakash SP, Desai MB, Prakash CS, Mistry VH, Radadiya KL (2020) Low dimensional DCT and DWT feature based model for detection of image splicing and copy-move forgery. Multimed Tools Appl 79(39):29977–30005. https://doi.org/10.1007/s11042-020-09415-2

    Article  Google Scholar 

  41. Zhao X, Wang S, Li S, Li J (2015) Passive image-splicing detection by a 2-D noncausal markov model. IEEE Trans Circuits Syst Video Technol 25(2):185–199. https://doi.org/10.1109/TCSVT.2014.2347513

    Article  Google Scholar 

  42. Korde SA, Nagtode SA (2019) Splicing Detection Technique Based on the Key-Point. In: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) (pp 1–4). IEEE. https://doi.org/10.1109/I2CT45611.2019.9033538

  43. Chen C, Ni J, Shen Z, Shi YQ (2017) Blind forensics of successive geometric transformations in digital images using spectral method: theory and applications. IEEE Trans Image Process 26(6):2811–2824. https://doi.org/10.1109/TIP.2017.2682963

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  44. OdabaşYıldırım E, Ulutaş G (2019) Augmented features to detect image splicing on SWT domain. Expert Syst Appl 131:81–93. https://doi.org/10.1016/j.eswa.2019.04.036

    Article  Google Scholar 

  45. Chen H, Zhao C, Shi Z, Zhu F (2018) An image splicing localization algorithm based on SLIC and image features. In: Advances in Multimedia Information Processing–PCM 2018: 19th Pacific-Rim Conference on Multimedia, Hefei, China, September 21-22, 2018, Proceedings, Part III 19 (pp 608–618). Springer International Publishing. https://doi.org/10.1007/978-3-030-00764-5_56

  46. Meena KB, Tyagi V (2020) A copy-move image forgery detection technique based on tetrolet transform. J Inf Secur Appl 52:102481. https://doi.org/10.1016/j.jisa.2020.102481

    Article  Google Scholar 

  47. Siddiqi MH et al (2021) Image splicing-based forgery detection using discrete wavelet transform and edge weighted local binary patterns. Secur Commun Netw 2021:e4270776. https://doi.org/10.1155/2021/4270776

    Article  Google Scholar 

  48. Zhang Y, Zhao C, Pi Y, Li S, Wang S (2015) Image-splicing forgery detection based on local binary patterns of DCT coefficients. Secur Commun Netw 8(14):2386–2395. https://doi.org/10.1002/sec.721

    Article  Google Scholar 

  49. Rhee KH (2020) Detection of spliced image forensics using texture analysis of median filter residual. IEEE Access 8:103374–103384. https://doi.org/10.1109/ACCESS.2020.2999308

    Article  Google Scholar 

  50. Jalab H, Subramaniam T, Ibrahim R, Kahtan H, Noor N (2019) New texture descriptor based on modified fractional entropy for digital image splicing forgery detection. Entropy 21(4):371. https://doi.org/10.3390/e21040371

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  51. Moghaddasi Z, Jalab HA, Md Noor R, Aghabozorgi S (2014) Improving RLRN image splicing detection with the use of PCA and Kernel PCA. Sci World J 2014:1–10. https://doi.org/10.1155/2014/606570

    Article  Google Scholar 

  52. Jaiswal AK, Srivastava R (2020) A technique for image splicing detection using hybrid feature set. Multimed Tools Appl 79(17–18):11837–11860. https://doi.org/10.1007/s11042-019-08480-6

    Article  Google Scholar 

  53. Farooq S, Yousaf MH, Hussain F (2017) A generic passive image forgery detection scheme using local binary pattern with rich models. Comput Electr Eng 62:459–472. https://doi.org/10.1016/j.compeleceng.2017.05.008

    Article  Google Scholar 

  54. Dua S, Singh J, Parthasarathy H (2020) Image forgery detection based on statistical features of block DCT coefficients. Procedia Comput Sci 171:369–378. https://doi.org/10.1016/j.procs.2020.04.038

    Article  Google Scholar 

  55. Zhang Z, Kang J, Ren Y (2008) An effective algorithm of image splicing detection. In: 2008 international conference on computer science and software engineering (Vol. 1, pp 1035–1039). IEEE. https://doi.org/10.1109/CSSE.2008.1621

  56. Jayan TJ, Sethu PS (2018) Estimation of Spliced Images in Photographs. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) (pp 248–252). IEEE. https://doi.org/10.1109/ICOEI.2018.8553823

  57. Sai Prasanna GV, Pavani K, Kumar Singh M (2022) Spliced images detection by using Viola-Jones algorithms method. Mater Today Proc 51:924–927. https://doi.org/10.1016/j.matpr.2021.06.300

    Article  Google Scholar 

  58. Niyishaka P, Bhagvati C (2021) Image splicing detection technique based on Illumination-Reflectance model and LBP. Multimed Tools Appl 80(2):2161–2175. https://doi.org/10.1007/s11042-020-09707-7

    Article  Google Scholar 

  59. Hakimi F, Hariri M, GharehBaghi F (2015) Image splicing forgery detection using local binary pattern and discrete wavelet transform. In: 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI) (pp 1074–1077). IEEE. https://doi.org/10.1109/KBEI.2015.7436195

  60. Hakimi F, Zanjan I, Hariri I (2015) Image-splicing forgery detection based on improved lbp and k-nearest neighbors algorithm. Electronics Information & Planning 3(0304–9876):7

  61. Ibrahim SJ, Noor M (2019) Improved image splicing forgery detection by combination of conformable focus measures and focus measure operators applied on obtained redundant discrete wavelet transform coefficients. Symmetry 11(11):1392. https://doi.org/10.3390/sym11111392

    Article  ADS  Google Scholar 

  62. Peng B, Wang W, Dong J, Tan T (2018) Image forensics based on planar contact constraints of 3D objects. IEEE Trans Inf Forensics Secur 13(2):377–392. https://doi.org/10.1109/TIFS.2017.2752728

    Article  Google Scholar 

  63. Kim D-H, Lee H-Y (2017) Image manipulation detection using convolutional neural network. Int J Appl Eng Res 12(21):11640–11646

    Google Scholar 

  64. Wei Y, Wang Z, Xiao B, Liu X, Yan Z, Ma J (2020) Controlling neural learning network with multiple scales for image splicing forgery detection. ACM Trans Multimed Comput Commun Appl 16(4):1–124. https://doi.org/10.1145/3408299

    Article  Google Scholar 

  65. Sharaff A, Singhal M, Chouradiya A, Gupta P (2023) An empirical analysis of deep ensemble approach on COVID-19 and tuberculosis X-ray images. Int J Biom 15(3–4):459–479

    Google Scholar 

  66. Patel B, Sharaff A (2023) Automatic Rice Plant’s disease diagnosis using gated recurrent network. Multimed Tools Appl 82(19):28997–29016. https://doi.org/10.1007/s11042-023-14980-3

    Article  Google Scholar 

  67. Kadam K, Ahirrao DS, Kotecha DK, Sahu S (2021) Detection and localization of multiple image splicing using mobilenet V1. Arxiv 9:162499. https://doi.org/10.48550/arXiv.2108.09674

    Article  Google Scholar 

  68. Zeng P, Tong L, Liang Y, Zhou N, Wu J (2022) Multitask image splicing tampering detection based on attention mechanism. Mathematics 10(20):1–13

    Article  Google Scholar 

  69. Passos LA, Jodas D, da Costa KAP, Júnior LAS, Colombo D, Papa JP (2022) A review of deep learning-based approaches for deepfake content detection. arxiv. [Online]. Available: http://arxiv.org/abs/2202.06095. Accessed 4 Oct 2023

  70. Abd El-Latif EI, Taha A, Zayed HH (2020) A passive approach for detecting image splicing based on deep learning and wavelet transform. Arab J Sci Eng 45(4):3379–3386. https://doi.org/10.1007/s13369-020-04401-0

    Article  Google Scholar 

  71. Abhishek, Jindal N (2021) Copy move and splicing forgery detection using deep convolution neural network, and semantic segmentation. Multimed Tools Appl 80(3):3571–3599. https://doi.org/10.1007/s11042-020-09816-3

    Article  Google Scholar 

  72. Rao Y, Ni J, Zhao H (2020) Deep learning local descriptor for image splicing detection and localization. IEEE Access 8:25611–25625. https://doi.org/10.1109/ACCESS.2020.2970735

    Article  Google Scholar 

  73. Almawas L, Alotaibi A, Kurdi H (2020) Comparative performance study of classification models for image-splicing detection. Procedia Comput Sci 175:278–285. https://doi.org/10.1016/j.procs.2020.07.041

    Article  Google Scholar 

  74. Wang J, Ni Q, Liu G, Luo X, Jha SKR (2020) Image splicing detection based on convolutional neural network with weight combination strategy. J Inf Secur Appl 54:102523. https://doi.org/10.1016/j.jisa.2020.102523

    Article  Google Scholar 

  75. Sun Y, Ni R, Zhao Y (2022) ET: Edge-enhanced transformer for image splicing detection. IEEE Signal Process Lett 29:1232–1236. https://doi.org/10.1109/LSP.2022.3172617

    Article  ADS  Google Scholar 

  76. Chen B, Qi X, Wang Y, Zheng Y, Shim HJ, Shi Y-Q (2018) An improved splicing localization method by fully convolutional networks. IEEE Access 6:69472–69480. https://doi.org/10.1109/ACCESS.2018.2880433

    Article  Google Scholar 

  77. Bappy JH, Simons C, Nataraj L, Manjunath BS, Roy-Chowdhury AK (2019) Hybrid LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans Image Process 28(7):3286–3300. https://doi.org/10.1109/TIP.2019.2895466

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  78. Peng J, Li Y, Liu C, Gao X (2023) The circular U-Net with attention gate for image splicing forgery detection. Electronics 12(6):1451. https://doi.org/10.3390/electronics12061451

    Article  Google Scholar 

  79. Ding H, Chen L, Tao Q, Fu Z, Dong L, Cui X (2023) DCU-Net: a dual-channel U-shaped network for image splicing forgery detection. Neural Comput Appl 35(7):5015–5031. https://doi.org/10.1007/s00521-021-06329-4

    Article  PubMed  Google Scholar 

  80. Xiao B, Wei Y, Bi X, Li W, Ma J (2020) Image splicing forgery detection combining coarse to refined convolutional neural network and adaptive clustering. Inf Sci 511:172–191. https://doi.org/10.1016/j.ins.2019.09.038

    Article  MathSciNet  Google Scholar 

  81. Nath S, Naskar R (2021) Automated image splicing detection using deep CNN-learned features and ANN-based classifier. Signal Image Video Process 15(7):1601–1608. https://doi.org/10.1007/s11760-021-01895-5

    Article  Google Scholar 

  82. Ahmed B, Gulliver TA, Alzahir S (2020) Image splicing detection using mask-RCNN. Signal Image Video Process 14(5):1035–1042. https://doi.org/10.1007/s11760-020-01636-0

    Article  Google Scholar 

  83. Bi X, Wei Y, Xiao B, Li W (2019) RRU-Net: The ringed residual U-Net for image splicing forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp 30–39). https://doi.org/10.1109/CVPRW.2019.00010

  84. Ben Aissa F, Hamdi M, Zaied M, Mejdoub M (2023) An overview of GAN-DeepFakes detection: proposal, improvement, and evaluation. Multimed Tools Appl 1–23. https://doi.org/10.1007/s11042-023-16761-4

  85. Remya Revi K, Vidya KR, Wilscy M (2021) Detection of deepfake images created using generative adversarial networks: a review. In: Second International Conference on Networks and Advances in Computational Technologies: NetACT 19 (pp 25–35). Springer International Publishing. https://doi.org/10.1007/978-3-030-49500-8_3

  86. Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp 1125–1134). https://doi.org/10.1109/CVPR.2017.632

  87. Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434

  88. Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision (pp 2794–2802)

  89. Brock A, Donahue J, Simonyan K (2018) Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096. https://doi.org/10.48550/arXiv.1809.11096

  90. Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196. https://arxiv.org/abs/1710.10196v3

  91. Kniaz VV, Knyaz V, Remondino F (2019) The point where reality meets fantasy: Mixed adversarial generators for image splice detection. In Advances in Neural Information Processing Systems, Curran Associates, Inc. Accessed: Sep. 20, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/98dce83da57b0395e163467c9dae521b-Abstract.html

  92. Bi X, Zhang Z, Xiao B (2021) Reality transform adversarial generators for image splicing forgery detection and localization. In: proceedings of the IEEE/CVF international conference on computer vision (pp 14294–14303). https://doi.org/10.1109/ICCV48922.2021.01403

  93. Liu Y, Zhu X, Zhao X, Cao Y (2019) Adversarial learning for constrained image splicing detection and localization based on atrous convolution. IEEE Trans Inf Forensics Secur 14(10):2551–2566. https://doi.org/10.1109/TIFS.2019.2902826

    Article  Google Scholar 

  94. Liu Y, Zhao X (2020) Constrained image splicing detection and localization with attention-aware encoder-decoder and atrous convolution. IEEE Access 8:6729–6741. https://doi.org/10.1109/ACCESS.2019.2963745

    Article  Google Scholar 

  95. Columbia Image Splicing Detection Evaluation Dataset. Accessed: Sep. 19, 2023. [Online]. Available: https://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm

  96. Dong J, Wang W, Tan T (2013) CASIA image tampering detection evaluation database. In 2013 IEEE China Summit and International Conference on Signal and Information Processing 422–426. https://doi.org/10.1109/ChinaSIP.2013.6625374

  97. Papers with Code - CASIA V2 Dataset. Accessed: Oct. 04, 2023. [Online]. Available: https://paperswithcode.com/dataset/casia-v2

  98. Open Media Forensics Challenge. NIST, Aug. 2016, Accessed: Oct. 04, 2023. [Online]. Available: https://www.nist.gov/itl/iad/mig/open-media-forensics-challenge

  99. Media Forensics Challenge 2018 NIST, Jul. 2017, Accessed: Oct. 04, 2023. [Online]. Available: https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018

  100. Guan H et al (2019) MFC Datasets: Large-scale benchmark datasets for media forensic challenge evaluation. NIST Accessed: Oct. 04, 2023. [Online]. Available: https://www.nist.gov/publications/mfc-datasets-large-scale-benchmark-datasets-media-forensic-challenge-evaluation

  101. COCO - Common Objects in Context. Accessed: Oct. 04, 2023. [Online]. Available: https://cocodataset.org/#home

  102. Lin T-Y et al (2014) Microsoft COCO: Common Objects in Context. In Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing 740–755. https://doi.org/10.1007/978-3-319-10602-1_48

  103. Papers with Code - PS-Battles Dataset. Accessed: Oct. 04, 2023. [Online]. Available: https://paperswithcode.com/dataset/ps-battles

  104. The Berkeley Segmentation Dataset and Benchmark. Accessed: Oct. 04, 2023. [Online]. Available: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

  105. About LibRaw | LibRaw. Accessed: Oct. 04, 2023. [Online]. Available: https://www.libraw.org/about

  106. Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur 7(6):1841–1854. https://doi.org/10.1109/TIFS.2012.2218597

    Article  Google Scholar 

  107. Gloe T, Böhme R (2010) The ‘Dresden Image Database’ for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre Switzerland: ACM, 1584–1590. https://doi.org/10.1145/1774088.1774427

  108. Carvalho T, Faria FA, Pedrini H, Torres da RS, Rocha A (2016) Illuminant-based transformed spaces for image forensics. IEEE Trans Inf Forensics Secur 11(4):720–733. https://doi.org/10.1109/TIFS.2015.2506548

    Article  Google Scholar 

  109. de Carvalho TJ, Riess C, Angelopoulou E, Pedrini H, de Rezende Rocha A (2013) Exposing digital image forgeries by illumination color classification. IEEE Trans Inf Forensics Secur 8(7):1182–1194. https://doi.org/10.1109/TIFS.2013.2265677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumari.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Garg, H. Image splicing forgery detection: A review. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18801-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18801-z

Keywords

Navigation