Skip to main content
Log in

Structural topic model-based comparative review of human pose estimation research in the United States and China

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Human pose estimation, a key area in computer vision, benefits various fields. The comparative study of research approaches in the United States and China, both leaders in this domain, is vital for understanding and influencing global trends in this technology. This review collected 191 influential papers from 2014 to 2022, sourced from Google Scholar. The Structural Topic Model (STM) was utilized to analyze research content, preferences, and trends in research topics. Specifically, 10 topics were summarized, and topic proportions, preferences, intensities, and word clouds were displayed via visualization methods. The findings revealed: 1) research on feature extraction and depth image constituted the largest proportion, approximately 12.2%, while data training research accounted for the lowest proportion, around 7.9%; 2) the United States and China exhibited distinct research preferences: the United States focused more on model and data research, while China emphasized deep learning and neural networks; 3) both countries exhibited similar research trends within the same topics, and research on deep learning technologies has experienced a slowdown in recent years. By comparative study, this review offers valuable insights and guidance for future investigations and applications in human pose estimation, such as improving the quality and diversity of data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Zheng C, Wu W, Chen C, Yang T, Zhu S, Shen J, Kehtarnavaz N, Shah M (2020) Deep learning-based human pose estimation: A survey, ArXiv Prepr. ArXiv2012.13392

  2. Munea TL, Jembre YZ, Weldegebriel HT, Chen L, Huang C, Yang C (2020) The progress of human pose estimation: A survey and taxonomy of models applied in 2D human pose estimation. IEEE Access 8:133330–133348

    Article  Google Scholar 

  3. Xuemei C (2018) Action Evaluation System Based on 3D Human Pose, Zhejiang University

  4. Yang J, Nguyen MN, San PP, Li X, Krishnaswamy S (2015) Deep convolutional neural networks on multichannel time series for human activity recognition., in: Ijcai, Buenos Aires, Argentina, 3995–4001

  5. Chen Y, Tian Y, He M (2020) Monocular human pose estimation: A survey of deep learning-based methods. Comput Vis Image Underst 192:102897

    Article  Google Scholar 

  6. Yong L, Jie L, Jianlin Z, Zhiyong X, Yuxing W (2021) Progress in 2D Human Pose Estimation Research Based on Deep Learning. Comput Eng 47:16

    Google Scholar 

  7. Hang YAN, Gang C, Yao T (2021) Human rehabilitation action recognition based on pose estimation and GRU network [J]. Comput Eng 47:12–20

    Google Scholar 

  8. Kreiss S, Bertoni L, Alahi A (2019) Pifpaf: Composite fields for human pose estimation, in: Proc. IEEE/CVF Conf Comput Vis Pattern Recognit. 11977–11986

  9. Colyer SL, Evans M, Cosker DP, Salo AIT (2018) A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sport Med 4:1–15

    Google Scholar 

  10. Toshev A, Szegedy C (2014) Deeppose: Human pose estimation via deep neural networks, in: Proc. IEEE Conf Comput Vis Pattern Recognit 1653–1660

  11. Carreira J, Agrawal P, Fragkiadaki K, Malik J (2016) Human pose estimation with iterative error feedback, in: Proc. IEEE Conf Comput Vis Pattern Recognit 4733–4742

  12. Chen X, Yuille AL (2014) Articulated pose estimation by a graphical model with image dependent pairwise relations, Adv Neural Inf Process Syst 27

  13. Tompson J, Goroshin R, Jain A, LeCun Y, Bregler C (2015) Efficient object localization using convolutional networks, in: Proc IEEE Conf Comput Vis Pattern Recognit 648–656

  14. Tompson JJ, Jain A, LeCun Y, Bregler C (2014) Joint training of a convolutional network and a graphical model for human pose estimation, Adv Neural Inf Process Syst 27

  15. Wei S-E, Ramakrishna V, Kanade T, Sheikh Y (2016) Convolutional pose machines, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 4724–4732

  16. Cai Y, Wang Z, Luo Z, Yin B, Du A, Wang H, Zhang X, Zhou X, Zhou E, Sun J (2020) Learning delicate local representations for multi-person pose estimation, in: Comput. Vision–ECCV 2020 16th Eur. Conf. Glas. UK, August 23–28, 2020, Proceedings, Part III 16, Springer 455–472

  17. Qiu L, Zhang X, Li Y, Li G, Wu X, Xiong Z, Han X, Cui S (2020) Peeking into occluded joints: A novel framework for crowd pose estimation, in: Comput. Vision–ECCV 2020 16th Eur. Conf. Glas. UK, August 23–28, 2020, Proceedings, Part XIX 16, Springer 488–504

  18. Pishchulin L, Insafutdinov E, Tang S, Andres B, Andriluka M, Gehler PV, Schiele B (2016) Deepcut: Joint subset partition and labeling for multi person pose estimation, in: Proc IEEE Conf Comput Vis Pattern Recognit 4929–4937

  19. Cao Z, Simon T, Wei S-E, Sheikh Y (2017) Realtime multi-person 2d pose estimation using part affinity fields, in: Proc IEEE Conf Comput Vis Pattern Recognit 7291–7299

  20. Güler RA, Neverova N, Kokkinos I (2018) Densepose: Dense human pose estimation in the wild, in: Proc IEEE Conf Comput Vis Pattern Recognit 7297–7306

  21. Choi H, Moon G, Lee KM (2020) Pose2mesh: Graph convolutional network for 3d human pose and mesh recovery from a 2d human pose, in: Comput. Vision–ECCV 2020 16th Eur. Conf. Glas. UK, August 23–28, 2020, Proceedings, Part VII 16, Springer 769–787

  22. Lugaresi C, Tang J, Nash H, McClanahan C, Uboweja E, Hays M, Zhang F, Chang C-L, Yong MG, Lee J (2019) Mediapipe: A framework for building perception pipelines, ArXiv Prepr. ArXiv1906.08172

  23. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context, in: Comput. Vision–ECCV 2014 13th Eur. Conf. Zurich, Switzerland, Sept. 6–12, 2014, Proceedings, Part V 13, Springer 740–755

  24. Fang H-S, Xie S, Tai Y-W, Lu C (2017) Rmpe: Regional multi-person pose estimation, in: Proc IEEE Int Conf Comput Vis 2334–2343

  25. Sun K, Xiao B, Liu D, Wang J (2019) Deep high-resolution representation learning for human pose estimation, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 5693–5703

  26. Chen Y, Wang Z, Peng Y, Zhang Z, Yu G, Sun J (2018) Cascaded pyramid network for multi-person pose estimation, in: Proc IEEE Conf Comput Vis Pattern Recognit 7103–7112

  27. COCO, COCO Keypoints Challenge, (n.d.). https://competitions.codalab.org/competitions/12061 (accessed March 22, 2023)

  28. Google, Google Fit, (n.d.). https://www.google.com/fit/ (accessed April 5, 2023)

  29. L. Calorie Technology Co., Keep, (n.d.). https://www.gotokeep.com/ (accessed April 5, 2023)

  30. Stanford Institute for Human-Centered Artificial Intelligence, Artificial Intelligence Index Report 2022, (n.d.). https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf (accessed March 20, 2023)

  31. Goodrick D (2014) Comparative case studies: Methodological briefs-Impact evaluation No. 9

  32. Liu Z, Zhu J, Bu J, Chen C (2015) A survey of human pose estimation: the body parts parsing based methods. J Vis Commun Image Represent 32:10–19

    Article  Google Scholar 

  33. Zhang F, Zhu X, Wang C (2021) Single person pose estimation: a survey, ArXiv Prepr. ArXiv2109.10056

  34. Baziyad H, Norouzi R, Akhondzadeh E, Albadvi A (2020) Mapping the intellectual structure of the Internet of ings (IoT) field based on web content: a co-word analysis, in: Proc Conf 4th Int Congr Electr Comput Mech Eng

  35. Baziyad H, Shirazi S, Hosseini S, Norouzi R (2019) Mapping the intellectual structure of epidemiology with use of co-word analysis, J Biostat Epidemiol

  36. Choi H, Woo J (2022) Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model. Appl Energy 313:118898

    Article  Google Scholar 

  37. Bai X, Zhang X, Li KX, Zhou Y, Yuen KF (2021) Research topics and trends in the maritime transport: A structural topic model. Transp Policy 102:11–24

    Article  Google Scholar 

  38. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    Google Scholar 

  39. Hosseini S, Baziyad H, Norouzi R, Jabbedari Khiabani S, Gidófalvi G, Albadvi A, Alimohammadi A, Seyedabrishami S (2021) Mapping the intellectual structure of GIS-T field (2008–2019): A dynamic co-word analysis, Scientometrics. 126: 2667–2688

  40. Pourhatami A, Kaviyani-Charati M, Kargar B, Baziyad H, Kargar M, Olmeda-Gómez C (2021) Mapping the intellectual structure of the coronavirus field (2000–2020): A co-word analysis. Scientometrics 126:6625–6657

    Article  Google Scholar 

  41. Roberts ME, Stewart BM, Tingley D (2019) Stm: An R package for structural topic models. J Stat Softw 91:1–40

    Article  Google Scholar 

  42. Chen X, Zou D, Cheng G, Xie H (2020) Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: A retrospective of all volumes of Computers & Education. Comput Educ 151:103855

    Article  Google Scholar 

  43. Haifeng L (2020) Comparative Analysis of Chinese and American AI+Education Research Topics - Discussing the Exploration of Literature Subject Data Mining Methods Based on Structural Topic Model. Intell Mag 39:9

    Google Scholar 

  44. Guangqing T, Jing L, Yao J, Rui T, Jie P (2022) Research on the Impact of STM-based research Grants on Research Topics. Mod Intell 42:58–68

    Google Scholar 

  45. Reddy ND, Guigues L, Pishchulin L, Eledath J, Narasimhan SG (2021) Tessetrack: End-to-end learnable multi-person articulated 3d pose tracking, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 15190–15200

  46. Chen H, Guo P, Li P, Lee GH, Chirikjian G (2020) Multi-person 3d pose estimation in crowded scenes based on multi-view geometry, in: Comput. Vision–ECCV 2020 16th Eur. Conf. Glas. UK, August 23–28, 2020, Proceedings, Part III 16, Springer 541–557

  47. Zhang Y, Wang C, Wang X, Liu W, Zeng W (2022) Voxeltrack: Multi-person 3d human pose estimation and tracking in the wild. IEEE Trans Pattern Anal Mach Intell 45:2613–2626

    Article  Google Scholar 

  48. Habibie I, Xu W, Mehta D, Pons-Moll G, Theobalt C (2019) In the wild human pose estimation using explicit 2d features and intermediate 3d representations, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 10905–10914

  49. Wang R, Geng F, Wang X (2022) MTPose: Human pose estimation with high-resolution multi-scale transformers. Neural Process Lett 54:3941–3964

    Article  Google Scholar 

  50. Huang F, Zeng A, Liu M, Lai Q, Xu Q (2020) DeepFuse: An IMU-aware network for real-time 3D human pose estimation from multi-view image, in: Proc IEEE/CVF Winter Conf Appl Comput Vis 429–438

  51. Kolotouros N, Pavlakos G, Daniilidis K (2019) Convolutional mesh regression for single-image human shape reconstruction, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 4501–4510

  52. Zeng W, Ouyang W, Luo P, Liu W, Wang X (2020) 3d human mesh regression with dense correspondence, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 7054–7063

  53. Kolotouros N, Pavlakos G, Black MJ, Daniilidis K (2019) Learning to reconstruct 3D human pose and shape via model-fitting in the loop, in: Proc IEEE/CVF Int Conf Comput Vis 2252–2261

  54. Papandreou G, Zhu T, Kanazawa N, Toshev A, Tompson J, Bregler C, Murphy K (2017) Towards accurate multi-person pose estimation in the wild, in: Proc IEEE Conf Comput Vis Pattern Recognit 4903–4911

  55. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn, in: Proc IEEE Int Conf Comput Vis 2961–2969

  56. Law H, Deng J (2018) Cornernet: Detecting objects as paired keypoints, in: Proc Eur Conf Comput Vis 734–750

  57. Zou Z, Tang W (2021) Modulated graph convolutional network for 3D human pose estimation, in: Proc IEEE/CVF Int Conf Comput Vis 11477–11487

  58. Chu X, Yang W, Ouyang W, Ma C, Yuille AL, Wang X (2017) Multi-context attention for human pose estimation, in: Proc IEEE Conf Comput Vis Pattern Recognit 1831–1840

  59. Qi CR, Yi L, Su H, Guibas LJ (2017) Pointnet++: Deep hierarchical feature learning on point sets in a metric space, Adv Neural Inf Process Syst 30

  60. Joo H, Simon T, Sheikh Y (2018) Total capture: A 3d deformation model for tracking faces, hands, and bodies, in: Proc IEEE Conf Comput Vis Pattern Recognit 8320–8329

  61. Rempe D, Birdal T, Hertzmann A, Yang J, Sridhar S, Guibas LJ (2021) Humor: 3d human motion model for robust pose estimation, in: Proc IEEE/CVF Int Conf Comput Vis 11488–11499

  62. Chen X, Yuille AL (2015) Parsing occluded people by flexible compositions, in: Proc IEEE Conf Comput Vis Pattern Recognit 3945–3954

  63. Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, Liu D, Mu Y, Tan M, Wang X (2020) Deep high-resolution representation learning for visual recognition. IEEE Trans Pattern Anal Mach Intell 43:3349–3364

    Article  Google Scholar 

  64. He Y, Huang H, Fan H, Chen Q, Sun J (2021) Ffb6d: A full flow bidirectional fusion network for 6d pose estimation, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 3003–3013

  65. Luo Z, Wang Z, Huang Y, Wang L, Tan T, Zhou E (2021) Rethinking the heatmap regression for bottom-up human pose estimation, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 13264–13273

  66. Geng Z, Sun K, Xiao B, Zhang Z, Wang J (2021) Bottom-up human pose estimation via disentangled keypoint regression, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 14676–14686

  67. Zhang F, Zhu X, Dai H, Ye M, Zhu C (2020) Distribution-aware coordinate representation for human pose estimation, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 7093–7102

  68. Chen Y, Shen C, Wei X-S, Liu L, Yang J (2017) Adversarial posenet: A structure-aware convolutional network for human pose estimation, in: Proc IEEE Int Conf Comput Vis 1212–1221

  69. Drover D, MV R, Chen C-H, Agrawal A, Tyagi A, Phuoc Huynh C (2018) Can 3d pose be learned from 2d projections alone?, in: Proc Eur Conf Comput Vis Work p. 0

  70. Chou C-J, Chien J-T, Chen H-T (2018) Self adversarial training for human pose estimation, in: 2018 Asia-Pacific Signal Inf Process Assoc Annu Summit Conf (APSIPA ASC), IEEE, 17–30

  71. Xiao B, Wu H, Wei Y (2018) Simple baselines for human pose estimation and tracking, in: Proc Eur Conf Comput Vis 466–481

  72. Artacho B, Savakis A (2020) Unipose: Unified human pose estimation in single images and videos, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 7035–7044

  73. Li J, Wang C, Zhu H, Mao Y, Fang H-S, Lu C (2019) Crowdpose: Efficient crowded scenes pose estimation and a new benchmark, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 10863–10872

  74. Tome D, Peluse P, Agapito L, Badino H (2019) xr-egopose: Egocentric 3d human pose from an hmd camera, in: Proc IEEE/CVF Int Conf Comput Vis 7728–7738

  75. Huang X, Fu N, Liu S, Ostadabbas S (2021) Invariant representation learning for infant pose estimation with small data, in: 2021 16th IEEE Int Conf Autom Face Gesture Recognit (FG 2021), IEEE, 1–8

  76. Yen-Chen L, Florence P, Barron JT, Rodriguez A, Isola P, Lin T-Y (2021) inerf: Inverting neural radiance fields for pose estimation, in: 2021 IEEE/RSJ Int. Conf. Intell. Robot. Syst., IEEE, 1323–1330

  77. Tremblay J, To T, Sundaralingam B, Xiang Y, Fox D, Birchfield S (2018) Deep object pose estimation for semantic robotic grasping of household objects, ArXiv Prepr. ArXiv1809.10790

  78. Wenjun Z, Xinbo Z, Linbo Q, Wenshi X, Xiaohong W (2018) Rapid Human Pose Estimation Based on Optical Flow. Comput Syst Appl 27:109–115

    Google Scholar 

  79. Lea C, Flynn MD, Vidal R, Reiter A, Hager GD (2017) Temporal convolutional networks for action segmentation and detection, in: Proc IEEE Conf Comput Vis Pattern Recognit 156–165

  80. Li C, Zhang Z, Lee WS, Lee GH (2018) Convolutional sequence to sequence model for human dynamics, in: Proc IEEE Conf Comput Vis Pattern Recognit 5226–5234

  81. Tu H, Wang C, Zeng W (2020) Voxelpose: Towards multi-camera 3d human pose estimation in wild environment, in: Comput. Vision–ECCV 2020 16th Eur. Conf. Glas. UK, August 23–28, 2020, Proceedings, Part I 16, Springer 197–212

  82. Zhang Z, Wang C, Qin W, Zeng W (2020) Fusing wearable imus with multi-view images for human pose estimation: A geometric approach, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 2200–2209

  83. Li W, Liu H, Ding R, Liu M, Wang P, Yang W (2022) Exploiting temporal contexts with strided transformer for 3d human pose estimation, IEEE Trans Multimed

  84. The White House Office of Science and Technology Policy, The National Artificial Intelligence Research and Development Strategic Plan: 2019 Update, (n.d.). https://www.nitrd.gov/pubs/National-AI-RD-Strategy-2019.pdf (accessed March 15, 2023)

  85. Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ (2015) SMPL: A skinned multi-person linear model. ACM Trans Graph 34:1–16

    Article  Google Scholar 

  86. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  87. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection, in: 2005 IEEE Comput Soc Conf Comput Vis Pattern Recognit, IEEE 886–893

  88. Yu T, Zheng Z, Guo K, Zhao J, Dai Q, Li H, Pons-Moll G, Liu Y (2018) Doublefusion: Real-time capture of human performances with inner body shapes from a single depth sensor, in: Proc IEEE Conf Comput Vis Pattern Recognit 7287–7296

  89. Varol G, Romero J, Martin X, Mahmood N, Black MJ, Laptev I, Schmid C (2017) Learning from synthetic humans, in: Proc IEEE Conf Comput Vis Pattern Recognit 109–117

  90. Chen W, Wang H, Li Y, Su H, Wang Z, Tu C, Lischinski D, Cohen-Or D, Chen B (2016) Synthesizing training images for boosting human 3d pose estimation, in: 2016 Fourth Int. Conf. 3D Vis., IEEE 479–488

  91. Yang W, Ouyang W, Li H, Wang X (2016) End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation, in: Proc IEEE Conf Comput Vis Pattern Recognit 3073–3082

  92. Girshick R (2015) Fast r-cnn, in: Proc IEEE Int Conf Comput Vis 1440–1448

  93. Rogez G, Weinzaepfel P, Schmid C (2019) Lcr-net++: Multi-person 2d and 3d pose detection in natural images. IEEE Trans Pattern Anal Mach Intell 42:1146–1161

    Google Scholar 

  94. Zhou X, Huang Q, Sun X, Xue X, Wei Y (2017) Towards 3d human pose estimation in the wild: a weakly-supervised approach, in: Proc IEEE Int Conf Comput Vis 398–407

  95. The State Council of China, Development Plan for New Generation Artificial Intelligence, (n.d.). http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm (accessed March 11, 2023)

  96. Zhao L, Wang N, Gong C, Yang J, Gao X (2021) Estimating human pose efficiently by parallel pyramid networks. IEEE Trans Image Process 30:6785–6800

    Article  Google Scholar 

  97. Luo Z, Wang Z, Huang Y, Wang L, Tan T, Zhou E (2021) Adaptive Dilated Convolution For Human Pose Estimation, ArXiv Prepr. ArXiv2107.10477

  98. Liu R, Shen J, Wang H, Chen C, Cheung S, Asari V (2020) Attention mechanism exploits temporal contexts: Real-time 3d human pose reconstruction, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 5064–5073

  99. Zhao L, Peng X, Tian Y, Kapadia M, Metaxas DN (2019) Semantic graph convolutional networks for 3d human pose regression, in: Proc IEEE/CVF Conf Comput Vis Pattern Recognit 3425–3435

  100. Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks, in: Int Conf Mach Learn, PMLR 6105–6114

  101. Bulat A, Tzimiropoulos G (2016) Human pose estimation via convolutional part heatmap regression, in: Comput. Vision–ECCV 2016 14th Eur. Conf. Amsterdam, Netherlands, Oct. 11–14, 2016, Proceedings, Part VII 14, Springer 717–732

  102. Mao W, Ge Y, Shen C, Tian Z, Wang X, Wang Z, van den Hengel A (2022) Poseur: Direct human pose regression with transformers, in: Eur Conf Comput Vis, Springer 72–88

  103. Mao W, Ge Y, Shen C, Tian Z, Wang X, Wang Z (2021) Tfpose: Direct human pose estimation with transformers, ArXiv Prepr. ArXiv2103.15320

  104. Fan X, Zheng K, Lin Y, Wang S (2015) Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation, in: Proc IEEE Conf Comput Vis Pattern Recognit 1347–1355

  105. Hossain MRI, Little JJ (2018) Exploiting temporal information for 3d human pose estimation, in: Proc Eur Conf Comput Vis 68–84

  106. Ionescu C, Papava D, Olaru V, Sminchisescu C (2013) Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments, IEEE Trans Pattern Anal Mach Intell 36, 1325–1339

  107. Chen H, Feng R, Wu S, Xu H, Zhou F, Liu Z (2022) 2D Human pose estimation: a survey, Multimed Syst 1–24

  108. Dubey S, Dixit M (2023) A comprehensive survey on human pose estimation approaches. Multimed Syst 29:167–195

    Article  Google Scholar 

  109. Song L, Yu G, Yuan J, Liu Z (2021) Human pose estimation and its application to action recognition: A survey. J Vis Commun Image Represent 76:103055

    Article  Google Scholar 

  110. Stenum J, Cherry-Allen KM, Pyles CO, Reetzke RD, Vignos MF, Roemmich RT (2021) Applications of pose estimation in human health and performance across the lifespan. Sensors 21:7315

    Article  Google Scholar 

  111. Andriluka M, Pishchulin L, Gehler P, Schiele B (2014) 2d human pose estimation: New benchmark and state of the art analysis, in: Proc IEEE Conf Comput Vis Pattern Recognit 3686–3693

Download references

Acknowledgements

This research was supported by the Shanghai Pujiang Program under Grant 21PJ1404000, the National Natural Science Foundation of China under Grant 62103252, the Shanghai Sports Science and Technology's "National Fitness Plan" project(22Q003), and the Shanghai Tech Rising Stars Program(22QC1401300). The authors would like to thank Jennifer (Yujiao) Qiao for the English improvement.

Author information

Authors and Affiliations

Authors

Contributions

Bo Sheng: Conceptualization, Methodology, Writing—original draft. Xiaohui Chen: Methodology, Writing—original draft. Yanxin Zhang: Writing – review & editing. Jing Tao: Writing – review & editing, Supervision. Yueli Sun: Writing – review & editing, Supervision.

Corresponding authors

Correspondence to Jing Tao or Yueli Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, B., Chen, X., Zhang, Y. et al. Structural topic model-based comparative review of human pose estimation research in the United States and China. Multimed Tools Appl (2023). https://doi.org/10.1007/s11042-023-17923-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-023-17923-0

Keywords

Navigation