Skip to main content
Log in

Unibotics: open ROS-based online framework for practical learning of robotics in higher education

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Robotics provides an increasing number of solutions for real-life problems, from autonomous driving to automatic cleaning, inspection and logistics. The demand of robotics education to train future engineers is also growing, both in regular degrees at universities and also in massive open online courses (MOOCs). Beyond theory lectures, robotics education typically requires hands-on and practiced robot programming to be effective and let the student develop the desired skills. This paper presents Unibotics, an open online learning platform that allows editing and running robot programs from the browser, and provides more than 20 academic units on service robotics, autonomous driving, drones, and mobile robotics. It uses state-of-the art open source robot simulator (Gazebo) and robot middleware (ROS), and so it is extensible with new exercises. It is intended as a tool for practical learning in robotics engineering university courses. The platform has been used by 130 students from four different university degrees. Furthermore, it has been experimentally validated at the Universidad Rey Juan Carlos (URJC) Master Degree in Computer Vision with 22 students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. https://www.udemy.com/

  2. https://www.theconstructsim.com/

  3. https://riders.ai

  4. https://robotbenchmark.net

  5. https://www.argos-sim.info/

  6. https://new.abb.com/products/robotics/robotstudio

  7. https://robodk.com/

  8. https://www.ros.org/

  9. http://sirslab.dii.unisi.it/GraspingCourse/index.html

  10. https://peps.python.org/pep-0008/

  11. https://jderobot.github.io/RoboticsAcademy/exercises/

  12. https://www.youtube.com/watch?v=IAGZmqNrmio

  13. https://www.youtube.com/watch?v=aWkTDp2UobM

  14. https://www.youtube.com/watch?v=obHhJ-_Y96c

  15. https://www.youtube.com/watch?v=y7rBPpV2NdI

  16. https://www.youtube.com/watch?v=Fv9s99IEIvc

  17. https://www.youtube.com/watch?v=xUpTw0_jt5s

  18. https://www.youtube.com/watch?v=vn4ahq8mElg

  19. https://robots.ros.org/kobuki/

  20. http://jderobot.github.io/RoboticsAcademy/

References

  1. Berenguel M, Rodríguez F, Moreno JC, Guzmán JL, González R (2016) Tools and methodologies for teaching robotics in computer science & engineering studies. Comput Appl Eng Educ 24(2):202–214

    Article  Google Scholar 

  2. Ganbat D, Tudevdagva U (2018) An overview of massive open online courses with topics of robotics. Embed Selforganising Syst 5(2):3–8

    Article  Google Scholar 

  3. Shibata M, Demura K, Hirai S, Matsumoto A (2021) Comparative study of robotics curricula. IEEE Transactions on education 64(3):283–291. https://doi.org/10.1109/TE.2020.3041667

    Article  Google Scholar 

  4. Maurelli F, Dineva E, Nabor A, Birk A (2021) Robotics and intelligent systems: a new curriculum development and adaptations needed in coronavirus times. International conference on robotics in education (RiE) Springer, pp 81–93

  5. Thrun S (2022) Artificial Intelligence for Robotics Nanodegree program. Georgia Institute of Technology via Udacity. https://www.udacity.com/ course/artificial-intelligence-for-robotics--cs373. Accessed 2022

  6. Siegwart R, Chli M, Hutter M, Scaramuzza D, Ruffli M, Lawrance N (2022) Autonomous Mobile Robots course. ETH Zurich via EdX https://www.edx.org/course/autonomous-mobile-robots. Accessed 2022

  7. Sturm J, Cremers D, Kerl C (2022) Autonomous Navigation for Flying Robots course. Technical University of Munich (TUM) via EdX. https://www.edx.org/course/autonomous-navigation-for-flying-robots. Accessed 2022

  8. Ubell R (2017) MOOCs come back to earth [resources education]. IEEE Spectrum 54(3):22–22. https://doi.org/10.1109/MSPEC.2017.7864749

    Article  Google Scholar 

  9. Reich J, Ruipérez-Valiente JA (2019) The MOOC pivot. Science 363(6423):130–131

    Article  Google Scholar 

  10. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, Wenderoth MP (2014) Active learning increases student performance in science, engineering, and mathematics. Proceedings of the national academy of sciences 111(23):8410–8415

    Article  Google Scholar 

  11. Hadgraft RG, Kolmos A (2020) Emerging learning environments in engineering education. Australas J Eng Educ 25(1):3–16

    Article  Google Scholar 

  12. Jung S (2013) Experiences in developing an experimental robotics course program for undergraduate education. IEEE Transactions on education 56(1):129–136. https://doi.org/10.1109/TE.2012.2213601

    Article  Google Scholar 

  13. Gerecke U, Wagner B (2007) The challenges and benefits of using robots in higher education. Intell Autom & Soft Comput 13(1):29–43

    Article  Google Scholar 

  14. Chan SSK, Geng J, Jong MS–Y, Lau DTM (2018) Addressing the Challenges in Engineering Classes: Harnessing Active Learning in a Robotics Course. 2018 International symposium on educational technology (ISET), IEEE, ???. IEEE, pp 162–164

  15. López-Nicolás G, Romeo A, Guerrero J (2011) Active learning in robotics based on simulation tools. Comput Appl Eng Educ 22(3):509–515

    Article  Google Scholar 

  16. Tselegkaridis S, Sapounidis T (2021) Simulators in educational robotics: A review. Educ Sci 11(1):11

    Article  Google Scholar 

  17. De Melo MSP, Silva Neto JG, Da Silva PJL, Teixeira JMXN, Teichrieb V (2019) Analysis and comparison of robotics 3d simulators. 2019 21st Symposium on virtual and augmented reality (SVR), IEEE, ???. IEEE, pp 242–251

  18. Loreto-Gómez G, Rodríguez-Arce J, González-García S, Montano-Serrano VM (2019) Analysing the effect of the use of 3d simulations on the performance of engineering students in a robotics course: Findings from a pilot study. The Int J Electr Eng & Educ 56(2):163–178. https://doi.org/10.1177/0020720918790113

    Article  Google Scholar 

  19. Avila EA, Chapa DP, Arenas ID, Hurtado CV (2022) A Digital Twin implementation for Mobile and collaborative robot scenarios for teaching robotics based on Robot Operating System. 2022 IEEE Global engineering education conference (EDUCON), IEEE, ???. IEEE, pp 559–564

  20. Koenig N, Howard A (2004) Design and use paradigms for gazebo, an opensource multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, ???. IEEE 3:2149–2154

  21. Xie M, Zhou D, Shi Y, Jia R (2018) Virtual experiments design for robotics based on V–REP. IOP Conference series: materials science and engineering, IOP Publishing, ???. IOP Publishing 428:012069

  22. Khosoussi LC, Tzoumas K, Habibi V, Ryll G, Talak M, Shi R, Antonante JP (2022) Visual navigation for autonomous vehicles: An open–source hands–on robotics course at MIT. IEEE

  23. Cañas JM, Perdices E, García-Pérez L, Fernández-Conde J (2020) A ROS-based open tool for intelligent robotics education. Appl Sci 10(21):7419

    Article  Google Scholar 

  24. Roldán–Álvarez, D., Mahna, S., Cañas, J.M (2021) A ROS–based Open Web Platform for Intelligent Robotics Education. International conference on robotics in education (RiE). Springer, ???, pp. 243–255

  25. Cañas JM, Martín-Martín D, Arias P, Vega J, Roldán-Álvarez D, García-Pérez L, Fernández-Conde J (2020) Open-source drone programming course for distance engineering education. Electronics 9(12):2163

    Article  Google Scholar 

  26. Esposito JM (2017) The state of robotics education: Proposed goals for positively transforming robotics education at postsecondary institutions. IEEE Robotics & automation magazine 24(3):157–164

    Article  Google Scholar 

  27. Mogoç R-I, Bodea C-N, Dascălu M-I, Safonkina O, Lazarou E, Trifan E-L, Nemoianu IV (2018) Technology enhanced learning for industry 4.0 engineering education. Rev Roum Sci Techn–’Electrotechn et Énerg 63(4):429–435

  28. Amsters R, Slaets P (2019) Turtlebot 3 as a robotics education platform. International conference on robotics in education (RiE). Springer, ???. Springer, pp 170–181

  29. Danahy E, Wang E, Brockman J, Carberry A, Shapiro B, Rogers CB (2014) Lego-based robotics in higher education: 15 years of student creativity. Int J Adv Robot Syst 11(2):27

    Article  Google Scholar 

  30. Mondada F, Bonani M, Riedo F, Briod M, Pereyre L, Rétornaz P, Magnenat S (2017) Bringing robotics to formal education: The thymio opensource hardware robot. IEEE Robotics & automation magazine 24(1):77–85

    Article  Google Scholar 

  31. Ma L (2021) Teaching undergraduate robotic courses using enhanced vex robots. J STEM Educ Innov Res 22(3)

  32. Santos Lopes MS, Gomes IP, Trindade RM, Silva AF, Lima ACdC (2016) Web environment for programming and control of a mobile robot in a remote laboratory. IEEE Transactions on learning technologies 10(4):526–531

    Article  Google Scholar 

  33. Lei M, Clemente IM, Liu H, Bell J (2022) The acceptance of telepresence robots in higher education. Int J Soc Robot pp 1–18

  34. Fitter NT, Raghunath N, Cha E, Sanchez CA, Takayama L, Matarić MJ (2020) Are we there yet? comparing remote learning technologies in the university classroom. IEEE Robotics and automation letters 5(2):2706–2713

    Article  Google Scholar 

  35. Jara CA, Candelas FA, Puente ST, Torres F (2011) Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Comput & Educ 57(4):2451–2461

    Article  Google Scholar 

  36. Potkonjak V, Gardner M, Callaghan V, Mattila P, Guetl C, Petrović VM, Jovanović K (2016) Virtual laboratories for education in science, technology, and engineering: A review. Comput & Educ 95:309–327

    Article  Google Scholar 

  37. Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla M, Mathews N, Ferrante E, Di Caro G, Ducatelle F, Birattari M, Gambardella LM, Dorigo M (2012) ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell 6(4):271–295

    Article  Google Scholar 

  38. Connolly C (2009) Technology and applications of abb robotstudio. Ind Robot 36(6):540–545

    Article  Google Scholar 

  39. Garbev A, Atanassov A (2020) Comparative analysis of robodk and robot operating system for solving diagnostics tasks in off-line programming. In: 2020 International conference automatics and informatics (ICAI). IEEE, pp 1–5

  40. Johns K, Taylor T (2009) Professional Microsoft Robotics Developer Studio. John Wiley & Sons ???

  41. Corke PI (1996) A robotics toolbox for matlab. IEEE Robot & Autom Mag 3(1):24–32

    Article  Google Scholar 

  42. Corke P (2007) Matlab toolboxes: robotics and vision for students and teachers. IEEE Robotics & automation magazine 14(4):16–17

    Article  Google Scholar 

  43. Corke P, Greener E, Philip R (2016) An innovative educational change: Massive open online courses in robotics and robotic vision. IEEE Robotics & automation magazine 23(2):81–89. https://doi.org/10.1109/MRA.2016.2548779

    Article  Google Scholar 

  44. Corke P, Haviland J (2021) Not your grandmother’s toolbox–the Robotics Toolbox reinvented for Python. 2021 IEEE International conference on robotics and automation (ICRA). IEEE, ??? IEEE pp 11357–11363

  45. Quigley M, Gerkey B, Smart WD (2015) Programming Robots with ROS: a Practical Introduction to the Robot Operating System. O’Reilly Media, Inc. ???

  46. Chunab-Rodríguez MA, Santana-Díaz A, Rodríguez-Arce J, Sánchez- Tapia E, Balbuena-Campuzano CA (2022) A free simulation environment based on ROS for teaching autonomous vehicle navigation algorithms. Appl Sci 12(14):7277

    Article  Google Scholar 

  47. Casañ GA, Cervera E (2018) The experience of the robot programming network initiative. J Robot 2018

  48. Cervera E, Martinet P, Marin R, Moughlbay AA, Del Pobil AP, Alemany J, Esteller R, Casan G (2016) The robot programming network. J Intell & Robot Syst 81(1):77–95

    Article  Google Scholar 

  49. Fernández-Ruiz R, Palacios-Alonso D, Cañas-Plaza JM, Roldán- Álvarez D (2023) Automatic competitions in the unibotics open online robot programming web. In: Tardioli D, Matellán V, Heredia G, Silva MF, Marques L (eds) ROBOT2022: Fifth Iberian Robotics Conference. Springer, Cham, pp 463–474

    Chapter  Google Scholar 

  50. Roy N, Schoellig A, Thrun S, D’Andrea R, Lupashin S, Lussier J, Brown A (2022) Flying Car and Autonomous Flight Engineer Nanodegree program. Udacity https://www.udacity.com/course/flying-car-nanodegree--nd787. Accessed 2022

  51. Tani J, Censi A, Frazzoli E (2022) Self-driving cars with Duckietown course. ETH Zurich via EdX https://www.edx.org/course/self-driving-cars-with-duckietown. Accessed 2022

  52. Shi J, Daniilidis K, Lee D (2022) Robotics: Vision Intelligence and Machine Learning course. Universisty of Pennsylvania via Coursera. https://www.edx.org/course/robotics-vision-intelligence-and-machine-learning. Accessed 2022

  53. Daniilidis K, Shi J (2022) Robotics Perception course. Universisty of Pennsylvania via Coursera. https://www.coursera.org/learn/robotics-perception. Accessed 2022

  54. Waslander S, Kelly J (2022) Self-Driving Cars Specialization course. Universisty of Toronto via Coursera. https://www.coursera.org/specializations/self-driving-cars. Accessed 2022

  55. Gouws P, Lotriet H, Kanakana-Katumba MG, Chetty D (2021) Towards defining the place and role of robotics MOOCs in odel. UnisaRxiv

  56. Paull L, Tani J, Ahn H, Alonso-Mora J, Carlone L, Cap M, Chen YF, Choi C, Dusek J, Fang Y, et al (2017) Duckietown: an open, inexpensive and flexible platform for autonomy education and research. 2017 IEEE International conference on robotics and automation (ICRA). IEEE, ??? IEEE pp 1497–1504

  57. Pozzi M, Malvezzi M, Prattichizzo D (2018) MOOC on the art of grasping and manipulation in robotics: Design choices and lessons learned. International conference on robotics and education RiE 2017. Springer, ??? Springer pp 71–78

  58. Carlone L, Khosoussi K, Ryll M, Habibi G, Tzuomas V, Talat R (2022) Visual Navigation for Autonomous Vehicles (VNAV) Course. MIT OpenCourseWare. https://ocw.mit.edu/courses/16-485-visual-navigation-for-autonomous-vehicles-vnav-fall-2020. Accessed 2022

  59. Nicolescu AF, Stan EL, Pupaza C (2019) E-LEARNING PLATFORM FOR ROBOTIC APPLICATIONS. 12th annual International conference of education, research and innovation, pp 7384–7391. IATED, ???. https://doi.org/10.21125/iceri.2019.1760

  60. Jara CA, Candelas FA, Pomares J, Torres F (2013) Java software platform for the development of advanced robotic virtual laboratories. Comput Appl Eng Educ 21(S1):14–30

    Article  Google Scholar 

  61. Peidró A, Reinoso Ó, José AG, Marín M, Payá L (2016) A simulation tool to study the kinematics and control of 2rpr-pr parallel robots. IFACPapersOnLine 49(6):268–273

    Google Scholar 

  62. Fabregas E, Farias G, Dormido-Canto S, Guinaldo M, Sánchez J, Dormido Bencomo S (2016) Platform for teaching mobile robotics. J Intell & Robot Syst 81(1):131–143

    Article  Google Scholar 

  63. Cervera E, Del Pobil AP (2019) ROSlab: Sharing ROS code interactively with docker and jupyterlab. IEEE Robotics and automation magazine 26(3):64–69. https://doi.org/10.1109/MRA.2019.2916286

    Article  Google Scholar 

  64. Borenstein J, Koren Y (1989) Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on systems, man, and cybernetics 19(5):1179–1187

    Article  Google Scholar 

  65. Dellaert F, Fox D, Burgard W, Thrun S (1999) Monte carlo localization for mobile robots. Proceedings 1999 IEEE international conference on robotics and automation (Cat. No. 99CH36288C). IEEE, ??? IEEE 2:1322–1328

    Google Scholar 

  66. Escalona F, Gomez-Donoso F, Cazorla M (2022) Implementation and evaluation of a remote platform for teaching robotics. 16th International Technology, Education and Development Conference. IATED, ???, pp 959–967. https://doi.org/10.21125/inted.2022.0308

  67. Castillo-Pizarro P, Arredondo TV, Torres-Torriti M (2010) Introductory survey to open-source mobile robot simulation software. In: 2010 Latin american robotics symposium and intelligent robotics meeting, pp 150–155. https://doi.org/10.1109/LARS.2010.19

  68. Rohmer E, Singh SPN, Freese M (2013) V-rep: A versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International conference on intelligent robots and systems, pp 1321–1326. https://doi.org/10.1109/IROS.2013.6696520

  69. Brooke J (1995) Sus: A quick and dirty usability scale. Usability Eval Ind 189

  70. Tellez R (2017) A thousand robots for each student: Using cloud robot simulations to teach robotics. In: Merdan M, Lepuschitz W, Koppensteiner G, Balogh R (eds) Robotics in Education. Springer, Cham, pp 143–155

Download references

Acknowledgements

This research was partially funded by the Community of Madrid in the framework of the research project RoboCity2030-DIH-CM (2019-2022): RoboCity2030-Madrid Robotics Digital Innovation Hub, Programa de Actividades de I+D entre Grupos de investigación de la Comunidad de Madrid en Tecnologías 2018 project ref. S2018/NMT-4331. Authors appreciate the help of Google for improving RoboticsAcademy through the Google Summer of Code program since 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Roldán-Álvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldán-Álvarez, D., Cañas, J.M., Valladares, D. et al. Unibotics: open ROS-based online framework for practical learning of robotics in higher education. Multimed Tools Appl (2023). https://doi.org/10.1007/s11042-023-17514-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-023-17514-z

Keywords

Navigation