Skip to main content
Log in

Application of deep learning approaches for classification of diabetic retinopathy stages from fundus retinal images: a survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract 

Diabetic retinopathy (DR) is an impediment of diabetes mellitus, which if not treated early may result in complete loss of vision, even without any preemptive symptoms. DR is caused by high level of glucose in the blood, causing alterations in the microvasculature of retina. However, early screening of diabetic patients through retinal fundus imaging, along with proper diagnosis and treatment can control the prevalence of DR complications. Manual inspection of pathological changes in retinal fundus images is an extremely challenging and tedious task. Therefore, computer-aided diagnosis (CAD) system is an efficient and effective method for early detection of DR and can greatly assist the ophthalmologists. CAD system encompasses DR detection and severity grading that includes detection, classification, localization and segmentation of lesions from the fundus images. Significant contributions have been made in DR severity grading using conventional image processing approaches using hand-engineered features and traditional machine-learning (ML) techniques. In the recent years, significant development of deep learning (DL) methods alleviated by the advancement of hardware computation power and efficient learning algorithms, has triumphed over the traditional ML methods in DR detection and grading tasks. Many researchers have employed the established as well as customized DL models in different DR image repositories and reported their findings. In this paper, we conduct a detailed review of the recent state-of-the-art contributions in the field of DL based DR classification by explaining their methodologies and highlighting their advantages and limitations. A detailed comparative study based on certain statistical parameters has also been conducted to quantitatively evaluate the methods, models and preprocessing techniques. In addition, the challenges in designing an efficient, accurate and robust deep-learning model for DR classification are explored in details to help the future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References 

  1. Wang RY, Zhang RP, Chen J, Sun R, Yang XY, Ke H, Chen DH (2013) Cai, Prevalence and risk factors for diabetic retinopathy in a high-risk Chinese population. BMC Public Health 13:633. https://doi.org/10.1186/1471-2458-13-633

    Article  Google Scholar 

  2. Sussman EJ, Tsiaras WG, Soper KA (1982) Diagnosis of diabetic eye disease. JAMA Ophthalmol 247(23):3231–3234

    Google Scholar 

  3. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321. https://doi.org/10.1016/j.diabres.2011.10.029

    Article  Google Scholar 

  4. Keenan TD, Johnston RL, Donachie PH, Sparrow JM, Stratton IM, Scanlon P (2013) United Kingdom National Ophthalmology Database Study: Diabetic Retinopathy; Report 1: prevalence of centre-involving diabetic macular edema and other grades of maculopathy and retinopathy in hospital eye services. Eye (London) 27:1397–1404

    Article  Google Scholar 

  5. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The wisconsin epidemiologic study of diabetic retinopathy II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526

    Article  Google Scholar 

  6. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin epidemiologic study of diabetic retinopathy III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 102:527–532

    Article  Google Scholar 

  7. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes, estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  Google Scholar 

  8. Kannan R (2019) India is home to 77 million diabetics, second highest in the world. The Hindu. ISSN 0971–751X. https://www.thehindu.com/sci-tech/health/india-has-second-largest-number-of-people-with-diabetes/article29975027.ece. Accessed 29 Apr 2020

  9. Migiro G (2018) Countries by Percentage of World Population, WorldAtlas. https://www.worldatlas.com/articles/countries-by-percentage-of-world-population.html. Accessed 19 May 2020

  10. Bhutia KL, Lomi N, Bhutia SC (2017) Prevalence of diabetic retinopathy in type 2 diabetic patients attending tertiary care hospital in sikkim. DJO 2017 28:19–21

    Google Scholar 

  11. Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R, Mohan V (2005) Prevalence of diabetic retinopathy in urban India: The Chennai urban rural epidemiology study (CURES) eye study. I Invest Ophthalmol Vis Sci 46:2328–2333. https://doi.org/10.1167/iovs.05-0019

    Article  Google Scholar 

  12. Rema M, Pradeepa R (2007) Diabetic retinopathy: An Indian perspective. Indian J Med Res 125:297–310

    Google Scholar 

  13. Raman R, Rani PK, Reddi Rachepalle S, Gnanamoorthy P, Uthra S, Kumaramanickavel G, Sharma T (2009) Prevalence of diabetic retinopathy in India: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study report 2. Ophthalmol 116(2):311–318. https://doi.org/10.1016/j.ophtha.2008.09.010

    Article  Google Scholar 

  14. Dr. Rajendra Prasad Centre for Ophthalmic Sciences et al (2019) AIIMS, New Delhi, National Diabetes and Diabetic Retinopathy Survey India 2015–2019 – A Summary Report, National Programme for Control of Blindness &Visual Impairment, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, New Delhi, 2019, .https://npcbvi.gov.in/writeReadData/mainlinkFile/File342.pdf Accessed: 2020–07–14

  15. Looker HC, Nyangoma SO, Cromie D, Olson JA, Leese GP, Black M, Doig J, Lee N, Lindsay RS, McKnight JA, Morris AD, Philip S, Sattar N, Wild SH, Colhoun HM, Scottish Diabetic Retinopathy Screening Collaborative, Scottish Diabetes Research Network Epidemiology Group (2012) Diabetic retinopathy at diagnosis of type 2 diabetes in Scotland. Diabetologia 55(9):2335–2342. https://doi.org/10.1007/s00125-012-2596-z

    Article  Google Scholar 

  16. Lee SC, Lee ET, Kingsley RM, Wang Y, Russell D, Klein R, Wanr A (2001) Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts. Arch Ophthalmol (Chicago, Ill.: 1960) 119(4):509–515. https://doi.org/10.1001/archopht.119.4.509

    Article  Google Scholar 

  17. Asiri N, Hussain M, Al Adel F, Alzaidi N (2019) Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Artif Intell Med 99:101701. https://doi.org/10.1016/j.artmed.2019.07.009

    Article  Google Scholar 

  18. Qureshi I, Ma J, Abbas Q (2019) Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry 11:749

    Article  Google Scholar 

  19. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  20. Kauppi T, Kälviäinen H (2008) Simple and robust optic disc localisation using colour decorrelated templates. In: Blanc-Talon J, Bourennane S, Philips W, Popescu D, Scheunders P (eds) Advanced Concepts for Intelligent Vision Systems, ACIVS 2008, Lecture Notes in Computer Science, vol 5259. Springer-Verlag, Heidelberg, pp 719–729. https://doi.org/10.1007/978-3-540-88458-3_65

    Chapter  Google Scholar 

  21. Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32(8):720–727. https://doi.org/10.1016/j.compmedimag.2008.08.009

    Article  Google Scholar 

  22. Jonas JB, Gusek GC, Naumann GOH (1988) Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol 226(6):587–590. https://doi.org/10.1007/BF02169209

    Article  Google Scholar 

  23. Joshi GD, Sivaswamy J, Krishnadas SR (2011) Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans Med Imaging 30(6):1192–1205. https://doi.org/10.1109/TMI.2011.2106509

    Article  Google Scholar 

  24. Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, Sharrett AR, Davis MD, Cai J (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12):2269–2280. https://doi.org/10.1016/S0161-6420(99)90525-0

    Article  Google Scholar 

  25. Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BE (2003) Revised formulas for summarizing retinal vessel diameters. Curr Eye Res 27(3):143–149. https://doi.org/10.1076/ceyr.27.3.143.16049

    Article  Google Scholar 

  26. Liu J, Wong DWK, Lim JH, Li H, Tan NM, Zhang Z, Wong TY, Lavanya R (2009) ARGALI: An automatic cup-to-disc ratio measurement system for glaucoma analysis using level-set image processing. In: Lim CT, Goh JCH (eds) 13th International Conference on Biomedical Engineering, IFMBE Proceedings, vol 23. Springer, Heidelberg, pp 559–562. https://doi.org/10.1007/978-3-540-92841-6_137

    Chapter  Google Scholar 

  27. Hatanaka Y, Noudo A, Muramatsu C, Sawada A, Hara T, Yamamoto T, Fujita H (2010) Automatic measurement of vertical cup-to-disc ratio on retinal fundus images. In: Zhang D, Sonka M (eds) Medical Biometrics. ICMB 2010. Lecture Notes in Computer Science, vol 6165. Springer, Heidelberg, pp 64–72. https://doi.org/10.1007/978-3-642-13923-9_7

    Chapter  Google Scholar 

  28. Gagnon L, Lalonde M, Beaulieu M, Boucher MC (2001) Procedure to detect anatomical structures in optical fundus images. In Proc SPIE Conf Med Imaging 4322:1218–1225. https://doi.org/10.1117/12.430999

    Article  Google Scholar 

  29. Brown BA, Williams H, George SJ (2017) Chapter six - evidence for the involvement of matrix-degrading metalloproteinases (MMPs) in atherosclerosis. In: Khalil RA (ed) Progress in Molecular Biology and Translational Science, vol 147. Academic Press, pp 197–237. https://doi.org/10.1016/bs.pmbts.2017.01.004

    Chapter  Google Scholar 

  30. Early Treatment Diabetic Retinopathy Study Research Group et al (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs–an extension of the modified Airlie House classification. Ophthalmology 98(5 Suppl):786–806 (ETDRS report number 10)

    Google Scholar 

  31. Schmidt D, McLeod D (2007) Cotton wool spots should not be regarded as retinal nerve fibre layer infarcts. Eur J Med Res 12(4):179–180

    Google Scholar 

  32. Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171. https://doi.org/10.1016/j.compbiomed.2013.11.014

    Article  Google Scholar 

  33. Lee T-Y, Cheng HD (1994) Parallel grading of venous beading on transputer, In Proceedings of 1994 20th Annual Northeast Bioengineering Conference, pp 54–58, Springfield, MA, USA. https://doi.org/10.1109/NEBC.1994.305177

  34. Patz A (1980) Studies on retinal neovascularization. friedenwald lecture. Invest Ophthalmol Vis Sci 19(10):1133–1138

    Google Scholar 

  35. Diabetic retinopathy, https://www.nhs.uk/conditions/diabetic-retinopathy/stages/. Accessed: 2020–07–17

  36. Early Treatment Diabetic Retinopathy Study Research Group et al (1987) Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema: Early treatment diabetic retinopathy study report number 2. Ophthalmology 94(7):761–774. https://doi.org/10.1016/s0161-6420(87)33527-4

    Article  Google Scholar 

  37. Acharya UR, Lim CM, Ng EY, Chee C, Tamura T (2009) Computer-based detection of diabetes retinopathy stages using digital fundus images. Proceedings of the institution of mechanical engineers, In Proceedings of the Institution of Mechanical Engineers. Part H, J Eng Med 223(5):545–53. https://doi.org/10.1243/09544119JEIM486

  38. Fleming AD, Goatman KA, Philip S, Williams GJ, Prescott GJ, Scotland GS, McNamee P, Leese GP, Wykes WN, Sharp PF, Olson JA, Scottish Diabetic Retinopathy Clinical Research Network (2010) The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy. Br J Ophthalmol 94(6):706–711. https://doi.org/10.1136/bjo.2008.149807

    Article  Google Scholar 

  39. Kanski JJ (2009) Clinical ophthalmology: a synopsis, 2nd edn. Butterworth-Heinemann, Elsevier

    Google Scholar 

  40. Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: Overview, challenges and the future. In: Dey N, Ashour A, Borra S (eds) Classification in BioApps, Lecture Notes in Computational Vision and Biomechanics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-65981-7_12

    Chapter  Google Scholar 

  41. Zachariah S, Wykes W, Yorston D (2015) Grading diabetic retinopathy (DR) using the Scottish grading protocol. Commun Eye Health 28(92):72–73

    Google Scholar 

  42. (2015) Diabetic retinopathy (DR): management and referral. In Community Eye Health 28(92):70–71. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944098/

  43. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein JC (2014) Feedback on a publicly distributed database: the Messidor database. Image Anal Stereol 33(3):231–234. https://doi.org/10.5566/ias.1155

    Article  Google Scholar 

  44. Abràmoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, Massin P, Cochener B, Gain P, Tang L, Lamard M, Moga DC, Quellec G, Niemeijer M (2013) Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmology 131(3):351–357. https://doi.org/10.1001/jamaophthalmol.2013.1743

    Article  Google Scholar 

  45. Messidor and Messidor 2 dataset. Available at: http://www.adcis.net/en/third-party/messidor/ and http://www.adcis.net/en/third-party/messidor2/. [Accessed: 2020–06–12]

  46. Decencière E, Cazuguel V, Zhang X, Thibault G, Klein J-C, Meyer F, Marcotegui B, Quellec G, Lamard M, Danno R, Elie D, Massin P, Viktor Z, Erginay A, Laÿ B, Chabouis A (2013) TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM 34(2):196–203. https://doi.org/10.1016/j.irbm.2013.01.010. Available: http://www.adcis.net/en/Download-Third-Party/E-Ophtha.html. [Accessed: 2020–06–12]

  47. Kaggle diabetic retinopathy detection competition: Kaggle EyePACS dataset, Available. https://www.kaggle.com/c/diabetic-retinopathy-detection/data. [Accessed: 2020–06–12]

  48. Kaggle APTOS 2019 Blindness Detection competition, Available. https://www.kaggle.com/c/aptos2019-blindness-detection/data. [Accessed: 2020–06–12]

  49. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (idrid): A database for diabetic retinopathy screening research. Data 3(3):25. Available: https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid. [Accessed: Jul. 20, 2020]

  50. Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recogn Lett 30(1):27–38. https://doi.org/10.1016/j.patrec.2008.08.010

    Article  Google Scholar 

  51. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learningand stochastic optimization. J Mach Learn Res 12:2121–2159

    MathSciNet  Google Scholar 

  52. Zeiler MD (2012) ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701

  53. Mcmahan HB, Streeter M (2014) Delay-tolerant algorithms for asynchronous distributed online learning. Adv Neural Inf Process Syst (Proceedings of NIPS), pp 1–9

  54. Kingma DP, Ba JL (2015) Adam: a Method for Stochastic Optimization. In: International Conference on Learning Representations 2015, pp 1–13

  55. Dozat T (2016) Incorporating nesterov momentum into adam. ICLR Workshop 1:2013–2016

    Google Scholar 

  56. Kumar SK (2017) On weight initialization in deep neural networks. CoRR, abs/1704.08863

  57. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imageNet classification. 2015 IEEE International Conference on Computer Vision (ICCV) (vol. 1, pp 1026-34). Santiago, Chile. https://doi.org/10.1109/iccv.2015.123

  58. Mishkin D, Matas J (2015) All you need is a good init. arXiv preprint arXiv:1511.06422

  59. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 (ICML'15). JMLR.org, pp. 448–456. https://doi.org/10.5555/3045118.3045167

  60. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer Vision – ECCV 2014. ECCV 2014, Lecture notes in computer science, vol 8689. Springer, Cham. https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  61. Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks, IEEE Conference On Computer Vision And Pattern Recognition (CVPR-2014), Columbus, OH, pp 1717–1724. https://doi.org/10.1109/CVPR.2014.222

  62. Canny J (1986) A computational approach to edge detection. In IEEE Trans Pattern Anal Mach Intell PAMI-8(6):679–698. https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  63. Kanopoulos N, Vasanthavada N, Baker RL (1988) Design of an image edge detection filter using the Sobel operator. In IEEE J Solid-State Circ 23(2):358–367. https://doi.org/10.1109/4.996

    Article  Google Scholar 

  64. Mehrotra R, Namuduri KR, Ranganathan N (1992) Gabor filter-based edge detection. Pattern Recogn 25(12):1479–1494. https://doi.org/10.1016/0031-3203(92)90121-X

    Article  Google Scholar 

  65. Lowe DG (2004) Distinctive Image Features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  66. H. Bay, T. Tuytelaars, L. Van Gool (2006) “SURF: Speeded Up Robust Features,” In: A. Leonardis, H. Bischof, A. Pinz (eds) Computer Vision – ECCV 2006, ECCV 2006, Lecture Notes in Computer Science, vol. 3951. Springer, Berlin, Heidelberg doi: https://doi.org/10.1007/11744023_32

  67. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, 1, pp. 886–893. https://doi.org/10.1109/CVPR.2005.177

  68. Ojala T, Pietikainen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. Proceedings of 12th International Conference on Pattern Recognition, Jerusalem, Israel 1:582–585. https://doi.org/10.1109/ICPR.1994.576366

  69. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In Proceedings of the IEEE 86(11):2278-2324. https://doi.org/10.1109/5.726791

  70. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  71. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556

  72. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Ribinovich A (2015) Going Deeper with Convolution. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015, pp 1–9, Boston

  73. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, Las Vegas, pp 770–778

  74. Szegedy C, Vanhoucke V, Ioffe S et al (2016) Rethinking the inception architecture for computer vision. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, Las Vegas, pp 2818–2826

  75. Szegedy C, Ioffe S, Vanhoucke V, Alexander AA (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI'17), pp 4278–4284, AAAI Press

  76. Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195

  77. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv preprint arXiv:1704.04861

  78. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243

  79. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, pp 8697–8710. https://doi.org/10.1109/CVPR.2018.00907

  80. Hu J, Shen L, Sun G (2018) Squeeze-and-Excitation Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, pp 7132–7141. https://doi.org/10.1109/CVPR.2018.00745

  81. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009) ImageNet: A large-scale hierarchical image database. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2009), Miami, pp 248–255. https://doi.org/10.1109/CVPR.2009.5206848

  82. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, pp 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965

  83. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham, pp 234–241. https://doi.org/10.1007/978-3-319-24574-428

    Chapter  Google Scholar 

  84. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In Advances in NIPS, pp 2672–80

  85. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv reprint arXiv:1409.0473

  86. Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv reprint arXiv:1511.06434

  87. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312. https://doi.org/10.1109/TMI.2016.2535302

    Article  Google Scholar 

  88. Erhan D, Bengio Y, Courville A, Manzagol P-A, Vincent P, Bengio S (2010) Why does unsupervised pre-training help deep learning? J Mach Lear Res 11(3/1/2010):625–660

    MathSciNet  Google Scholar 

  89. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. Proc Comput Sci 90:200–205. https://doi.org/10.1016/j.procs.2016.07.014

    Article  Google Scholar 

  90. Doshi D, Shenoy A, Sidhpura D, Gharpure P (2016) Diabetic retinopathy detection using deep convolutional neural networks. 2016 International Conference on Computing, Analytics and Security Trends (CAST), Pune, pp 261–266. https://doi.org/10.1109/CAST.2016.7914977

  91. Vo HH, Verma A (2016) New deep neural nets for fine-grained diabetic retinopathy recognition on hybrid color space. 2016 IEEE International Symposium on Multimedia (ISM), San Jose, pp 209–215. https://doi.org/10.1109/ISM.2016.0049

  92. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA Ophthalmology 316(22):2402–2410. https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  93. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13):5200–5206. https://doi.org/10.1167/iovs.16-19964

    Article  Google Scholar 

  94. Colas E, Besse A, Orgogozo A, Schmauch B, Meric N, Besse E (2016) Deep learning approach for diabetic retinopathy screening. Acta Ophthalmol 94(S256). https://doi.org/10.1111/j.1755-3768.2016.0635

  95. Costa P, Campilho A (2017) Convolutional bag of words for diabetic retinopathy detection from eye fundus images. IPSJ Trans Comput Vis Appl 9:10. https://doi.org/10.1186/s41074-017-0023-6

    Article  Google Scholar 

  96. Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object matching in videos. In Proceedings of Ninth IEEE International Conference on Computer Vision, Nice, France, vol 2, pp 1470-1477.https://doi.org/10.1109/ICCV.2003.1238663

  97. Pires R, Jelinek HF, Wainer J, Valle E, Rocha A (2014) Advancing bag-of-visual-words representations for lesion classification in retinal images. PLoS ONE 9(6):e96814. https://doi.org/10.1371/journal.pone.0096814

    Article  Google Scholar 

  98. Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969. https://doi.org/10.1016/j.ophtha.2017.02.008

    Article  Google Scholar 

  99. Wang Z, Yin Y, Shi J, Fang W, Li H, Wang X (2017) Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins D, Duchesne S (eds) Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. MICCAI 2017. Lecture Notes in Computer Science, vol 10435. Springer, Cham, pp 267–275. https://doi.org/10.1007/978-3-319-66179-7_31

    Chapter  Google Scholar 

  100. Quellec G, Charriére K, Boudi Y, Cochener B, Lamard M (2017) Deep image mining for diabetic retinopathy screening. Med Image Anal 39:178–193. https://doi.org/10.1016/j.media.2017.04.012

    Article  Google Scholar 

  101. Antony M, Brüggeman S (2015) Team o_O Solution. https://www.kaggle.com/c/diabetic-retinopathy-detection/discussion/15617

  102. Kauppi T, Kalesnykiene V, Kämäräinen J, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H, Pietilä J (2007) The DIARETDB1 Diabetic retinopathy database and evaluation protocol. In British Machine Vision Conference (BMVC), pp 1–10

  103. Yang Y, Li T, Li W, Wu H, Fan W, Zhang W (2017) Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins D, Duchesne S (eds) Medical image computing and computer assisted intervention − MICCAI 2017, MICCAI 2017, Lecture Notes in Computer Science, vol 10435. Springer, Cham, pp 533–540. https://doi.org/10.1007/978-3-319-66179-7_61

  104. Wang Z, Yang J (2017) Diabetic retinopathy detection via deep convolutional networks for discriminative localization and visual explanation. arXiv preprint arXiv. 1703.10757.2017

  105. Kanungo YS, Srinivasan B, Choudhary S (2017) Detecting diabetic retinopathy using deep learning. 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). Bangalore, India, pp 801–804. https://doi.org/10.1109/RTEICT.2017.8256708

  106. Gondal WM, Köhler JM, Grzeszick R, Fink GA, Hirsch M (2017)Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. The IEEE International Conference on Image Processing (ICIP-2017), pp 2069–73. https://doi.org/10.1109/ICIP.2017.8296646

  107. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), Las Vegas, pp 2921–2929. https://doi.org/10.1109/CVPR.2016.319

  108. Ting DS, Cheung CY-L, Lim G, Tan GS, Quang ND, Gan A, Hamzah H, Garcia-Franco R, Yeo IYS, Lee SY et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA Ophthalmology 318(22):2211–2223. https://doi.org/10.1001/jama.2017.18152

    Article  Google Scholar 

  109. García G, Gallardo J, Mauricio A, López J, Del Carpio C (2017) Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images. In: Lintas A, Rovetta S, Verschure P, Villa A (eds) Artificial Neural Networks and Machine Learning – ICANN 2017, Lecture Notes in Computer Science, vol 10614. Springer, Cham, pp 635–642. https://doi.org/10.1007/978-3-319-68612-7_72

    Chapter  Google Scholar 

  110. Li X, Pang T, Xiong B, Liu W, Liang P, Wang T (2017) Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, pp 1–11. https://doi.org/10.1109/CISP-BMEI.2017.8301998

  111. Wan S, Liang Y, Zhang Y (2018) Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng 72:274–282. https://doi.org/10.1016/j.compeleceng.2018.07.042

    Article  Google Scholar 

  112. Buades A, Coll B, Morel J (2005) A non-local algorithm for image denoising. In Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, vol 2, pp 60–65. https://doi.org/10.1109/CVPR.2005.38

  113. Mansour RF (2018) Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed Eng Lett 8(1):41–57. https://doi.org/10.1007/s13534-017-0047-y

    Article  Google Scholar 

  114. Antal B, Hajdu A (2012) An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans Biomed Eng 59(6):1720–1726. https://doi.org/10.1109/TBME.2012.2193126

    Article  Google Scholar 

  115. Walter T, Klein JC (2002) Automatic detection of microaneurysms in color fundus images of the human retina by means of the bounding box closing. In: Colosimo A, Sirabella P, Giuliani A (eds) Medical Data Analysis: Third International Symposium (ISMDA 2002), Lecture Notes in Computer Science, vol 2526. Springer, Heidelberg, pp 210–220. https://doi.org/10.1007/3-540-36104-9_23

    Chapter  Google Scholar 

  116. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Graphics Gems 4:474–485

    Article  Google Scholar 

  117. Youssif A, Ghalwash AZ, Ghoneim AS (2006) Comparative study of contrast enhancement and illumination equalization methods for retinal vasculature segmentation. In Proceedings of Third Cairo International Biomedical Engineering Conference (CIBEC’06), pp 21–24

  118. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CAT. No PR00149) 2:246-252. Fort Collins, CO, USA. https://doi.org/10.1109/CVPR.1999.784637

  119. Criminisi A, Perez P, Toyama K (2003) Object removal by exemplar based inpainting. In Proceedings of 2003 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03). 2 Madison, WI, USA, pp 721–728. https://doi.org/10.1109/CVPR.2003.1211538

  120. Chen Y-W, Wu T-Y, Wong W-H, Lee C-Y (2018) Diabetic retinopathy detection based on deep convolutional neural networks. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, pp 1030–1034.https://doi.org/10.1109/ICASSP.2018.8461427

  121. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  122. Polesel A, Ramponi G, Mathews VJ (2000) Image enhancement via adaptive unsharp masking. IEEE Trans Image Process 9(3):505–510. https://doi.org/10.1109/83.826787

    Article  Google Scholar 

  123. Lam C, Yi D, Guo M, Lindsey T (2018) Automated detection of diabetic retinopathy using deep learning. In Proceedings of AMIA Joint Summits on Translational Science 2017:147–155

  124. Lin Z, Guo R, Wang Y, Wu B, Chen T, Wang W, Chen DZ (2018) A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In: Frangi A, Schnabel J, Davatzikos C, Alberola-López C, Fichtinger G (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, MICCAI 2018, Lecture Notes in Computer Science, vol 11071. Springer, Cham, pp 74–82. https://doi.org/10.1007/978-3-030-00934-2_9

    Chapter  Google Scholar 

  125. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer Vision – ECCV 2016, ECCV 2016, Lecture Notes in Computer Science, vol 9911. Springer, Cham, pp 499–515. https://doi.org/10.1007/978-3-319-46478-731

    Chapter  Google Scholar 

  126. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C, Berg AC (2016) SSD: single shot multibox detector. In: Leibe B, Matas J, Sebe N, Welling M (eds) ECCV 2016, ECCV 2016, Lecture Notes in Computer Science, vol 9905. Springer, Cham, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  127. Junjun P, Zhifan Y, Dong S, Hong Q (2018) Diabetic retinopathy detection based on deep convolutional neural networks for localization of discriminative regions. 2018 International Conference on Virtual Reality and Visualization (ICVRV), Qingdao, China, pp 46–52. https://doi.org/10.1109/ICVRV.2018.00016

  128. Graham B (2015) Kaggle diabetic retinopathy detection competition report. University of Warwick

  129. Orlando JI, Prokofyeva E, Fresno MD, Blaschko MB (2018) An ensemble deep learning based approach for red lesion detection in fundus images. Comput Methods Programs Biomed 153:115–127. https://doi.org/10.1016/j.cmpb.2017.10.017

    Article  Google Scholar 

  130. Kori A, Chennamsetty SS, Mohammed Safwan KP, Varghese A (2018) Ensemble of convolutional neural networks for automatic grading of diabetic retinopathy and macular edema. arXiv reprint arXiv: abs/1809.04228

  131. Mateen M, Wen J, Song Nasrullah S, Huang Z (2019) Fundus Image Classification Using VGG-19 Architecture with PCA and SVD. Symmetry 11(1):1. https://doi.org/10.3390/sym11010001

    Article  Google Scholar 

  132. Harangi B, Toth J, Baran A, Hajdu A (2019) Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp 2699–2702. https://doi.org/10.1109/EMBC.2019.8857073

  133. Lazar I, Hajdu A (2013) Retinal microaneurysm detection through local rotating cross-section profile analysis. In IEEE Trans Med Imaging 32(2):400–407. https://doi.org/10.1109/TMI.2012.2228665

    Article  Google Scholar 

  134. Walter T, Massin P, Erginay A, Ordonez R, Jeulin C, Klein JC (2007) Automatic detection of microaneurysms in color fundus images. Med Image Anal 11(6):555–566. https://doi.org/10.1016/j.media.2007.05.001

    Article  Google Scholar 

  135. Zhang B, Wu X, You J, Li Q, Karray F (2010) Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recogn 43(6):2237–2248. https://doi.org/10.1016/j.patcog.2009.12.017

    Article  Google Scholar 

  136. Finlayson GD, Schiele B, Crowley JL (1998) Comprehensive colour image normalization. In: Burkhardt H, Neumann B (eds) Computer Vision – ECCV’98, ECCV 1998, Lecture Notes in Computer Science, vol 1406. Springer, Heidelberg, pp 475–490. https://doi.org/10.1007/BFb0055685

    Chapter  Google Scholar 

  137. Walter T, Klein JC, Massin P, Erginay A (2002) A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. In IEEE Trans Med Imaging 21(10):1236–1243. https://doi.org/10.1109/TMI.2002.806290

    Article  Google Scholar 

  138. Welfer D, Scharcanski J, Marinho DR (2010) A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput Med Imaging Graph 34(3):228–235. https://doi.org/10.1016/j.compmedimag.2009.10.001

    Article  Google Scholar 

  139. Ahmad M, Kasukurthi N, Pande H (2019) Deep learning for weak supervision of diabetic retinopathy abnormalities. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, pp 573–577. https://doi.org/10.1109/ISBI.2019.8759417

  140. Zhou Y, He X, Huang L, Liu L, Zhu F, Cui S, Shao L (2019) Collaborative learning of semi-supervised segmentation and classification for medical images. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19), Long Beach, CA, USA, pp 2074–2083. https://doi.org/10.1109/CVPR.2019.00218

  141. Lin T, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. IEEE International Conference on Computer Vision (ICCV), Venice, pp 2999–3007. https://doi.org/10.1109/ICCV.2017.324

  142. Li X, Hu X, Yu L, Zhu L, Fu C, Heng P (2020) CANet: Cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. In IEEE Trans Med Imaging 39(5):1483–1493. https://doi.org/10.1109/TMI.2019.2951844

    Article  Google Scholar 

  143. Saxena G, Verma DK, Paraye A, Rajan A, Rawat A (2020) Improved and robust deep learning agent for preliminary detection of diabetic retinopathy using public datasets. Intell-Based Med 3(4). https://doi.org/10.1016/j.ibmed.2020.100022

  144. Zhang Z (2020) Deep-learning-based early detection of diabetic retinopathy on fundus photography using efficientNet.” In Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence (ICIAI 2020). Association for Computing Machinery, New York, pp 70–74. https://doi.org/10.1145/3390557.3394303

  145. Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, In Proceedings of Machine Learning Research

  146. Li T, Gao Y, Wang K, Guo S, Liu H, Kang H (2019) Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf Sci 501:511–522

    Article  Google Scholar 

  147. Dekhil O, Naglah A, Shaban M, Ghazal M, Taher F, Elbaz A (2019) Deep learning based method for computer aided diagnosis of diabetic retinopathy. In Proceedings of the IST 2019—IEEE International Conference on Imaging Systems and Techniques, Abu Dhabi, United Arab Emirates; pp. 1–4

  148. Kassani SH, Kassani PH, Khazaeinezhad R, Wesolowski MJ, Schneider KA, Deters R (2019) Diabetic retinopathy classification using a modified Xception architecture. In Proceedings of the 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates, pp 1–6

  149. He A, Li T, Li N, Wang K, Fu H (2020) CABNet: Category attention block for imbalanced diabetic retinopathy grading. IEEE Trans Med Imaging 40:143–153

    Article  Google Scholar 

  150. Bodapati JD, Shaik NS, Naralasetti V (2021) Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. J Ambient Intell Humaniz Comput 12:9825–9839. https://doi.org/10.1007/s12652-020-02727-z

    Article  Google Scholar 

  151. Alyoubi WL, Abulkhair MF, Shalash WM (2021) Diabetic retinopathy fundus image classification and lesions localization system using deep learning. Sensors 21(11):3704. https://doi.org/10.3390/s21113704

    Article  Google Scholar 

  152. Deepa V, Kumar CS, Cherian T (2022) Ensemble of multi-stage deep convolutional neural networks for automated grading of diabetic retinopathy using image patches. J King Saud Univ - Comput Inf Sci 34(8, Part B):6255–6265. https://doi.org/10.1016/j.jksuci.2021.05.009. (ISSN 1319-1578)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nilarun Mukherjee and Souvik Sengupta wrote the main manuscript text, tables and prepared the figures. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to N. Mukherjee.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Human/Animal rights

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Conflict of interest

Nilarun Mukherjee and Souvik Sengupta declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, N., Sengupta, S. Application of deep learning approaches for classification of diabetic retinopathy stages from fundus retinal images: a survey. Multimed Tools Appl 83, 43115–43175 (2024). https://doi.org/10.1007/s11042-023-17254-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17254-0

Keywords

Navigation