Skip to main content
Log in

An efficient transfer learning approach for prediction and classification of SARS – COVID -19

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

COVID-19 or Corona Virus Disease is a dangerous disease that spreads quickly and affects human life brutally, becoming the cause of death of millions of people. COVID mainly infects the lungs of human beings and that’s why lung images are mostly used for Covid detection. In this research paper, an innovative efficient Transfer Learning approach for Covid -19 prediction is described. The dataset contains Computer Tomography images of the Chest and has been collected from two sources: First SARS-CoV-2 CT has 2482 images of Covid and healthy persons. Non-Covid CT scan images of both SARS-CoV-2 positive and negative patients and second UCSD-AI4H COVID CT scan dataset containing 745 CT scan images of both SARS-CoV-2 positive and negative patients. As datasets containing images are collected from various sources, machine learning pre-processing techniques such as CLAHE, and data augmentation, are applied to enhance contrast, quality, and quantity. Then, a popular pre-trained CNN, called VGG16, is used as the base model, as it has shown its ability on the image dataset in terms of very good accuracy in the prediction and classification of the images related to medical diagnosis. Then we build our sequential model by applying ReLU and Softmax functions and trained it with 21,137,986 parameters. The dataset is divided into three parts in the ratio of 80%, 10%, and 10%, for Training, Testing, and Validation, respectively. The model shows a very good classification of Covid-positive and Covid Negative images as it was able to provide an accuracy of 95%. The Precision was 95%, Recall was 95%, and the F-1 Score was 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kumar P, Chauhan S, Awasthi LK (2023) Artificial Intelligence in Healthcare: Review, Ethics. Trust Challenges Future Res Direct 120(105894):1–19. https://doi.org/10.1016/j.engappai.2023.105894

    Article  Google Scholar 

  2. Liu D, Liang H et al (2022) Edge Computing Application, Architecture, and Challenges in Ubiquitous Power Internet of Things. Front Energy Res 10(850252):1–18. https://doi.org/10.3389/fenrg.2022.850252

    Article  Google Scholar 

  3. Park SW, Ko JS et al (2021) Review on Generative Adversarial Networks: Focusing on computer vision and its applications. Electronics 10(1216):1–40. https://doi.org/10.3390/electronics10101216

    Article  Google Scholar 

  4. Bharti R, Khamparia A et al (2021) Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning. Comput Intell Neurosci 8387680:1–11. https://doi.org/10.1155/2021/8387680

    Article  Google Scholar 

  5. Chang V, Bhavani VR et al (2022) An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Anal 2(100016):1–42. https://doi.org/10.1016/j.health.2022.100016

    Article  Google Scholar 

  6. Nashif S, Raihan MR et al (2018) Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System. World J Eng Technol 6(4):1–17. https://doi.org/10.4236/wjet.2018.64057

    Article  Google Scholar 

  7. Butt UM, Letchmunan S et al (2021) Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications. J Healthcare Eng 9930985:1–17. https://doi.org/10.1155/2021/9930985

    Article  Google Scholar 

  8. Mujumdar A, Vaidehi V (2020) Diabetes Prediction using Machine Learning Algorithms. Proc Comput Sci 165:292–299. https://doi.org/10.1016/j.procs.2020.01.047

    Article  Google Scholar 

  9. Zhang L, Wang Y et al (2020) Machine learning for characterizing risk of type 2 diabetesmellitus in a rural Chinese population: the Henan Rural cohort study. Scientific Reports 10 (4406)

  10. Balkenende L, Teuwen J, Mann RM (2022) Application of Deep Learning in Breast Cancer Imaging. Sem Nuclear Med 52(5):584–596. https://doi.org/10.1053/j.semnuclmed.2022.02.003

    Article  Google Scholar 

  11. Shen L, Margolies et al (2019) Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Scientific Rep 9(12495):1–12. https://doi.org/10.1038/s41598-019-48995-4

    Article  Google Scholar 

  12. Irmak E (2021) Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. Iranian J Sci Technol Trans Electric Eng 45:1015–1036. https://doi.org/10.1007/s40998-021-00426-9(0123456789().-volV

    Article  Google Scholar 

  13. Younis A, Qiang L et al (2022) Brain Tumor Analysis Using Deep Learning and VGG-16 Ensembling Learning Approaches. Appl Sci 12(7282):1–20. https://doi.org/10.3390/app12147282

    Article  Google Scholar 

  14. Ranjbarzadeh R, Kasgari AB et al (2021) Brain tumour segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Scientific Rep 11(10930):1–17. https://doi.org/10.1038/s41598-021-90428-8

    Article  Google Scholar 

  15. Akitoshi Shimazaki A, Ueda D et al (2022) Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Scientific Rep 12(727):1–10. https://doi.org/10.1038/s41598-021-04667-w

    Article  Google Scholar 

  16. Chaunzwa TL, Hosny A et al (2021) Deep learning classification of lung cancer histology using CT images. Scientific Rep 11(5471). https://doi.org/10.1038/s41598-021-84630-x

  17. Asmaul Hosna A, Merry E et al (2022) Transfer learning: a friendly introduction. J Big Data 9(102):1–19. https://doi.org/10.1186/s40537-022-00652-w

    Article  Google Scholar 

  18. Laith Alzubaidi L, Al-Amidie M et al (2021) Novel Transfer Learning Approach for Medical Imaging with Limited Labelled Data. Cancers 13(1590):1–22. https://doi.org/10.3390/cancers13071590

    Article  Google Scholar 

  19. La Montagne JR, Simon L et al (2004) severe acute respiratory syndrome: Developing a Research Response. J Infect Dis 189:634–641

    Article  Google Scholar 

  20. Cheng VCC, Lau SKP et al (2007) Severe Acute Respiratory Syndrome Coronavirus as an agent of Emerging and Re-emerging infection. Clin Microbiol Rev 20(4):660–694. https://doi.org/10.1128/CMR.00023-07

    Article  Google Scholar 

  21. Hilgenfeld R, Peiris M (2013) From SARS to MERS: 10 years of Research on Highly Pathogenic Human Coronaviruses. Antiviral Res 100:286–295. https://doi.org/10.1016/j.antiviral.2013.08.015

    Article  Google Scholar 

  22. Yuen KS, Ye ZW et al (2020) SARS- CoV- 2 and COVID – 19: The Most Important Research Questions. Cell Biosci 10(40):1–5. https://doi.org/10.1186/s13578-020-00404-4

    Article  Google Scholar 

  23. Wang MY, Zhao LJ et al (2020) SARS- CoV- 2: Structure, Biology and Structure – based Therapeutics Development. Front Cell Infect Microbiol 10(587269):1–17. https://doi.org/10.3389/fcimb.2020.587269

    Article  Google Scholar 

  24. Mohan BS, Nambiar V (2020) COVID – 19: An Insight into SARS – CoV – 2 Pandemic Originated at Wuhan City in Hubei Province of China. J Infect Dis Epidemiol 6(146):1–8. https://doi.org/10.23937/2474-3658/1510146

    Article  Google Scholar 

  25. Yang Y, Xiao Z et al (2020) SARS – CoV – 2: Characteristics and Current Advances in Research. Virol J 17(117):1–17. https://doi.org/10.1186/s12985-020-01369-z

    Article  Google Scholar 

  26. Hu B, Guo H et al (2020) Characteristics of SARS – CoV – 2 and COVID - 19. Nat Rev Microbiol 19:141–154. https://doi.org/10.1038/s41579-020-00459-7

    Article  Google Scholar 

  27. Sheren MA, Khan S et al (2020) COVID – 19 Infection: Emergencies, Transmission, and Characteristics of Human Coronaviruses. J Adv Res 24:91–98. https://doi.org/10.1016/j.jare.2020.03.005

    Article  Google Scholar 

  28. Amin S, Uddin MI et al (2021) Machine Learning Approach for COVID-19 Detection on Twitter. Comput Mater Continua 68(2):2231–2247. https://doi.org/10.32604/cmc.2021.016896

    Article  Google Scholar 

  29. Callahan A, Steinberg E et al (2020) Estimating the efficacy of symptom-based screening for COVID-19. npj Digital Med 3(95):1–3. https://doi.org/10.1038/s41746-020-0300-0

    Article  Google Scholar 

  30. Jin J, Agarwala N et al (2021) Individual and community-level risk for COVID-19 mortality in the United States. Nat Med 27(264):264–269. https://doi.org/10.1038/s41591-020-01191-8

    Article  Google Scholar 

  31. Thompson EJ, Williams DM et al (2022) Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat Commun 13(3528):1–11. https://doi.org/10.1038/s41467-022-30836-0

    Article  Google Scholar 

  32. Mizrahi B, Shilo S et al (2020) Longitudinal symptom dynamics of. COVID-19 Infect Nat Commun 11(6208):1–10. https://doi.org/10.1038/s41467-020-20053-y

    Article  Google Scholar 

  33. Heidari A, Navimipour NJ et al (2022) Machine learning applications for COVID-19 outbreak management. Neural Comput Appl 34:15313–15348. https://link.springer.com/article/10.1007/s00521-022-07424-w

    Article  Google Scholar 

  34. Brunese L, Martinelli F et al (2020) Machine learning for coronavirus covid-19 detection from chest x-rays. Proc Comput Sci 176:2212–2221. https://doi.org/10.1016/j.procs.2020.09.258

    Article  Google Scholar 

  35. Zhao W, Jiang W, Qiu X (2021) Deep learning for COVID-19 detection based on CT images. Scientific Rep 11(14353):1–12. https://doi.org/10.1038/s41598-021-93832-2

    Article  Google Scholar 

  36. Zoabi Y, Rozov SD, Shomron N (2021) Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj Digital Medicine 4(3):1–5. https://doi.org/10.1038/s41746-020-00372-6

    Article  Google Scholar 

  37. Kushwaha S, Bahl S et al (2020) Significant Applications of Machine Learning for COVID-19 Pandemic. J Indust Int Manag 5(4):453–479. https://www.worldscientific.com/doi/abs/10.1142/S2424862220500268

    Article  Google Scholar 

  38. Salam AM, Ramadan TS (2021) COVID-19 detection using federated machine learning. PLoS ONE 16(6):1–25. https://doi.org/10.1371/journal.pone.0252573

    Article  Google Scholar 

  39. Kennedy B, Fitipaldi H et al (2022) App-based COVID-19 syndromic surveillance and prediction of hospital admissions in COVID Symptom Study Sweden. Nat Commun 13(2110). https://doi.org/10.1038/s41467-022-29608-7

  40. Reddy ASK, Rao KNB et al (2023) Multi Modal Fusion of Deep Transfer Learning Based COVID – 19 Diagnosis and Classification using Chest X- Ray images. Multimed Tools Appl 82:12653–12677. https://doi.org/10.1007/s11042-022-13739-6

    Article  Google Scholar 

  41. Dash AK, Mohapatra P (2022) A Fined Tune Deep Convolutional Neural Network for Chest Radiography image classification on Cases. Multimed Tools Appl 81:1055–1075. https://doi.org/10.1007/s11042-021-11388-9

    Article  Google Scholar 

  42. Das D, Wiswas SK, Bandyopadhyay (2022) Perspective of AI System for COVID – 19 detection using Chest images: Multi Modal Fusion of Deep Transfer Learning Based COVID – 19 Diagnosis and Classification using Chest X- Ray images: A Review. Multimed Tools Appl 81:21471–21501. https://doi.org/10.1007/s11042-022-11913-4

    Article  Google Scholar 

  43. Yadav PD, Nyayanit DA et al (2021) Isolation and Characterization of the new SARS – CoV – 2 variant in travellers from the United Kingdom to India: VUI – 2020/2/a1 of the B.1.1.7 Lineage. J Travel Med 28:1–3. https://doi.org/10.1093/jtm/taab009

    Article  Google Scholar 

  44. Hua L, Zhe L, Junbo G (2020) Scientific Research Progress of COVID – 19/ SARS – CoV – 2 in the First Five Months. J Cell Mol Med 24:6558–6570. https://doi.org/10.1111/jcmm.15364

    Article  Google Scholar 

  45. Wagner CS, Cai X, Zhang Y, Fry CV (2021) One Year in: COVID – 19 Research at the International Level in CORD – 19 Data. PLOS ONE 17(5):1–25. https://doi.org/10.1371/journal.pone.0261624

    Article  Google Scholar 

  46. Yadav PD, Nyayanit DA et al (2021) An Epidemiological Analysis of SARS – CoV – 2 Genomic Sequences from Different Regions of India. Viruses 13(925):1–13. https://doi.org/10.3390/v13050925

    Article  Google Scholar 

  47. Phan TN, Guyen NVH, Huh JH (2023) Integration of Integration of Improved YOLOv5 for Face Mask Detector and Auto Labeling to Generate datasets for Fighting against COVID – 19. J Supercomput 79:8966–8992. https://doi.org/10.1007/s11227-022-04979-2

    Article  Google Scholar 

  48. Liu Q, Xu K, Wang X, Wang W (2020) From SARS to COVID – 19: What lesson have we learned? J Infect Public Health 13:1611–1618. https://doi.org/10.1016/j.jiph.2020.08.001

    Article  Google Scholar 

  49. Pandey N, Patnaik PK, Gupta S (2020) Data Pre-processing for Machine Learning Models using Python Libraries. Int J Eng Adv Technol 9(4):1995–1999. https://doi.org/10.35940/ijeat.D9057.049420

    Article  Google Scholar 

  50. Kotsiantis DSB, Kanellopoulos D, Pintelas PE (2006) Data Pre-processing for Supervised Learning. Int J Comput Sci 1(1):111–117

    Google Scholar 

  51. Felix EA, Lee SP (2019) Systematic Literature Review of Pre-processing Techniques for Imbalanced Data. IET Software 13(6):479–496. https://doi.org/10.1049/iet-sen.2018.5193www.ietdl.org

    Article  Google Scholar 

  52. Vargas VWD, Aranda JAS et al (2023) Imbalanced Data Pre Processing Techniques for Machine Learning: A Systematic Mapping Study. Knowl Inf Syst 65:31–57. https://doi.org/10.1007/s10115-022-01772-8

    Article  Google Scholar 

  53. Kaur H, Sohi N (2017) A Study for Application of Histogram in Image Enhancement. Int J Eng Sci 6(6):59–63. https://doi.org/10.9790/1813-0606015963

    Article  Google Scholar 

  54. Arun JB, Choudhary R (2013) Image retrieval using histogram-based contents of an image. Int J Eng Res Technol 2(10):3219–3223

    Google Scholar 

  55. Oktaxianto B, Purboyo TW (2018) A study of histogram equalization techniques for image enhancement. Int J Appl Eng Res 13(2):1165–1170

    Google Scholar 

  56. Pavithra P, Ramyashree N, Shruthi TV, Majumdar J (2011) Image Enhancement by Histogram Specification Using Multiple Target Images. Int J Comput Commun Technol 2(1):29–37. https://doi.org/10.47893/IJCCT.2011.1067

    Article  Google Scholar 

  57. Omarova GS, Aitkozha Zh Z et al (2022) Application of the CLAHE Method Contrast Enhancement of X-Ray Images. Int J Adv Comput Sci Appl 13(5):412–419

    Google Scholar 

  58. Hussain K, Rahman S et al (2018) A histogram specification technique for dark image enhancement using a local transformation method. IPSJ Trans Comput Vis Appl 10(3):1–11. https://doi.org/10.1186/s41074-018-0040-0

    Article  Google Scholar 

  59. Hussain K, Rahman S, Rahman M, Khaled SM, Wadud A, Khan MAH, Shoaib M (2018) A histogram specification technique for dark image enhancement using a local transformation method. IPSJ Trans Comput Vis Appl 10(3):1–11. https://doi.org/10.1186/s41074-018-0040-0

    Article  Google Scholar 

  60. Zhen L, Sun X (2021) The research of convolutional neural network based on integrated classification in question classification. Hindawi Sci Programm 4176059:1–8. https://doi.org/10.1155/2021/4176059

    Article  Google Scholar 

  61. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9:611–629. https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  62. Alzubaidi L, Zhang J et al (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8(53):1–74. https://doi.org/10.1186/s40537-021-00444-8

    Article  Google Scholar 

  63. Tammina S (2019) Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. Int J Sci Res Publ 9(10):143–150. https://doi.org/10.29322/IJSRP.9.10.2019.p9420

    Article  Google Scholar 

  64. Guan Q, Wang Y, Ping B, Li D, Du J, Qin Y, Lu H, Wan X, Xiang J (2019) Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. J Cancer 10(20):4876–4882. https://doi.org/10.7150/jca.28769

    Article  Google Scholar 

  65. Jiang ZP, Liu YY, Shao ZE, Huang KW (2021) An Improved VGG16 Model for Pneumonia Image Classification. Appl Sci 11(11185):1–19. https://doi.org/10.3390/app112311185

    Article  Google Scholar 

  66. Gu S, Pednekar M, Slater R (2019) Improve Image Classification Using Data Augmentation and Neural Networks. SMU Data Sci Rev 2(2):1–44 https://scholar.smu.edu/datasciencereview/vol2/iss2/1

    Google Scholar 

  67. Shorten C, Khoshgoftaar TM (2019) A survey on Image Data Augmentation for Deep Learning. J Big Data 6(60):1–48. https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  68. Pesch IS, Bestelink E et al (2022) Multimodal transistors as ReLU activation functions in physical neural network classifiers. Sci Rep 12(670):1–7. https://doi.org/10.1038/s41598-021-04614-9

    Article  Google Scholar 

  69. Maniatopoulos A, Mitianoudis N (2021) Learnable Leaky ReLU (LeLeLU): An Alternative Accuracy-Optimized Activation Function. Information 12(513):1–16. https://doi.org/10.3390/info12120513

    Article  Google Scholar 

  70. Fei Gao F, Li B et al (2021) A SoftMax classifier for high-precision classification of ultrasonic similar signals. Ultrasonics 112(106344):1–10. https://doi.org/10.1016/j.ultras.2020.106344

    Article  Google Scholar 

  71. Cardarelli GC, Luca Di Nunzio LD (2021) A pseudo-SoftMax function for hardware-based high-speed image classification. Sci Rep 11(15307):1–12. https://doi.org/10.1038/s41598-021-94691-7

    Article  Google Scholar 

  72. Markoulidakis L, Rallis L et al (2021) Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem. Technologies 9(4). https://doi.org/10.3390/technologies9040081

  73. Sekeroglu B, Ozsahin L (2020) Detection of Covid -19 from Chest X-Ray images using Convolutional Neural Networks. SLAS Technol 25(6):553–565. https://doi.org/10.1177/2472630320958376

    Article  Google Scholar 

  74. Wang S, Kang B et al (2021) A deep learning algorithm using CT images to screen for Coronavirus disease (COVID-19). Eur Radiol 31:6096–6104. https://doi.org/10.1007/s00330-021-07715-1

    Article  Google Scholar 

  75. Perumal V, Narayanan V, Rajasekar SJS (2021) Prediction of COVID-19 with Computed Tomography Images using Hybrid Learning Techniques. Disease Markers 5522729:1–15. https://doi.org/10.1155/2021/5522729

    Article  Google Scholar 

  76. Silva P, Luz E et al (2020) COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis. Inf Med Unlocked 20(100427):1–9. https://doi.org/10.1016/j.imu.2020.100427

    Article  Google Scholar 

Download references

Acknowledgments

We want to give our sincere acknowledgment to Dr. Sanjeev Sharma, Director School of Information Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya Bhopal (M.P.), India for his continuous motivation and support.

Data availability statement

The datasets analyzed during the current study are available in the Kaggle repository, www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset.

And GitHub repository, https://github.com/UCSD-AI4H/COVID-CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kumar Joshi.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, K.K., Gupta, K. & Agrawal, J. An efficient transfer learning approach for prediction and classification of SARS – COVID -19. Multimed Tools Appl 83, 39435–39457 (2024). https://doi.org/10.1007/s11042-023-17086-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17086-y

Keywords

Navigation