Skip to main content
Log in

Cryptanalysis of a color image encryption using minimax differential evolution-based 7D hyper-chaotic map

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes two attack methods to break the encryption algorithm using minimax differential evolution-based 7D hyper-chaotic map. In attack method 1, the secret keys generated by the 7D hyper-chaotic map can be directly revealed through two pairs of plain/cipher images. Once the secret keys are known, any cipher image can be decrypted easily. In attack method 2, we build three dictionary matrices of R, G and B channels firstly, and the corresponding plain image pixel value can be queried in the dictionary matrix one by one without using the secret keys or any system parameter. Experimental results demonstrate that the cryptosystem can be broken successfully by either of the proposed methods, thus avoiding the potential unexpected loss caused by the use of insecure encryption schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Azimi Z, Ahadpour S (2020) Color image encryption based on dna encoding and pair coupled chaotic maps. Multimed Tools Appl 79:1727–1744. https://doi.org/10.1007/s11042-019-08375-6

    Article  Google Scholar 

  2. Chen T-H, Chang-Sian W (2010) Compression-unimpaired batch-image encryption combining vector quantization and index compression. Inf Sci 180(9):1690–1701. https://doi.org/10.1016/j.ins.2009.12.021

    Article  Google Scholar 

  3. Fan H, Li M, Liu D, Zhang E (2017) Cryptanalysis of a colour image encryption using chaotic APFM nonlinear adaptive filter. Signal Process 143:28–41. https://doi.org/10.1016/j.sigpro.2017.08.018

    Article  Google Scholar 

  4. Gaurav Bhatnagar QM, Jonathan W, Raman B (2013) Discrete fractional wavelet transform and its application to multiple encryption. Inf Sci 223:297–316. https://doi.org/10.1016/j.ins.2012.09.053

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghadirli HM, Nodehi A, Enayatifar R (2019) An overview of encryption algorithms in color images. Signal Process 164:163–185. https://doi.org/10.1016/j.sigpro.2019.06.010

    Article  Google Scholar 

  6. Girdhar A, Kumar V (2018) A RGB image encryption technique using Lorenz and Rossler chaotic system on DNA sequences. Multimed Tools Appl 77:27017–27039. https://doi.org/10.1007/s11042-018-5902-z

    Article  Google Scholar 

  7. Hsiao H-I, Lee J (2015) Color image encryption using chaotic nonlinear adaptive filter. Signal Process 117:281–309. https://doi.org/10.1016/j.sigpro.2015.06.007

    Article  Google Scholar 

  8. Hua Z, Zhou Y (2017) Design of image cipher using block-based scrambling and image filtering. Inf Sci 396:97–113. https://doi.org/10.1016/j.ins.2017.02.036

    Article  MATH  Google Scholar 

  9. Kaur M, Kumar V (2018) An efficient image encryption method based on improved lorenz chaotic system. Electron Lett 54(9):562–564

    Article  Google Scholar 

  10. Kaur M, Kumar V (2018) Adaptive differential evolution-based Lorenz chaotic system for image encryption. Arab J Sci Eng 43:8127–8144. https://doi.org/10.1007/s13369-018-3355-3

    Article  Google Scholar 

  11. Kaur M, Singh D, Kumar V (2020) Color image encryption using minimax differential evolution-based 7d hyper-chaotic map. Appl Phys B Lasers Opt 126(9):1–19

    Article  Google Scholar 

  12. Kerckhoffs’s principle (2020) http://www.crypto-it.net/eng/theory/kerckhoffs.html (last access on March, 29,2020)

  13. Li C (2016) Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Process 118:203–210. https://doi.org/10.1016/j.sigpro.2015.07.008

    Article  Google Scholar 

  14. Li C, Lin D, Lu J (2017) Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Multimed 24(3):64–71

    Article  Google Scholar 

  15. Li C, Lin D, Feng B, Lü J, Hao F (2018) Cryptanalysis of a chaotic image encryption algorithm based on information entropy. IEEE Access 6:75834–75842

    Article  Google Scholar 

  16. Li M, Lu D, Xiang Y, Zhang Y, Ren H (2019) Cryptanalysis and improvement in a chaotic image cipher using two-round permutation and diffusion. Nonlin Dyn 96(1):31–47

    Article  MATH  Google Scholar 

  17. Manjit K, Vijay K (2018) Color image encryption technique using differential evolution in nonsubsampled contourlet transform domain. IET Image Process 12(7):1273–1283

    Article  Google Scholar 

  18. Qiu X, Xu J-X, Xu Y, Tan KC (2018) A new differential evolution algorithm for minimax optimization in robust design. IEEE Trans Cybern 48(5):1355–1368

    Article  Google Scholar 

  19. Xu L, Li Z, Li J, Hua W (2016) A novel bit-level image encryption algorithm based on chaotic maps. Opt Lasers Eng 78:17–25. https://doi.org/10.1016/j.optlaseng.2015.09.007

    Article  Google Scholar 

  20. Yap WS, Phan CW, Yau WC, Heng SH (2015) Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlin Dyn 80(3):1483–1491

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye G, Pan C, Huang X, Zhao Z, He J (2018) A chaotic image encryption algorithm based on information entropy. Int J Bifurcation Chaos 28(01):1850010. https://doi.org/10.1142/S0218127418500098

    Article  MathSciNet  MATH  Google Scholar 

  22. Yong Z, Ac A, Yt A, Jd A, Gw B (2020) Plaintext-related image encryption algorithm based on perceptron-like network. Inf Sci 526:180–202. https://doi.org/10.1016/j.ins.2020.03.054

    Article  MathSciNet  Google Scholar 

  23. Zhang E, Li F, Niu B, Wang Y (2017) Server-aided private set intersection based on reputation. Inf Sci 387:108–194. https://doi.org/10.1016/j.ins.2016.09.056

    Article  MATH  Google Scholar 

  24. Zhou Y, Panetta K, Sos Agaian CL, Chen P (2012) Image encryption using P-Fibonacci transform and decomposition. Opt Commun 285(5):594–608. https://doi.org/10.1016/j.optcom.2011.11.044

    Article  Google Scholar 

  25. Zhou Y, Panetta K, Agaian S, Chen CLP (2013) (n, k, p)-gray code for image systems. IEEE Trans Cybern 43(2):515–529

    Article  Google Scholar 

  26. Yang, Qigui, Zhu, Daoyu, et al. (2018) A new 7D Hyperchaotic system with five positive Lyapunov exponents coined. Int J Bifurcation Chaos Appl Sci Eng 28(05) 1850057. https://doi.org/10.1142/S0218127418500578

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61602158) and the Science and Technology Research Project of Henan Province (212102210413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proposition

Suppose that x is an 8-bit unsigned integer, then

$$255\oplus x=255-x$$

Proof

XOR is a binary bitwise operation. Suppose that the binary form of x and another number y are as follows:

$$\left\{\begin{array}{c}{(x)}_{10}={\left({x}_1{x}_2{x}_3{x}_4{x}_5{x}_6{x}_7{x}_8\right)}_2\\ {}{(y)}_{10}={\left({y}_1{y}_2{y}_3{y}_4{y}_5{y}_6{y}_7{y}_8\right)}_2\end{array}\right.,$$
(55)

where the subscript denotes the corresponding base. We know

$${\displaystyle \begin{array}{c}255\oplus x={\left(11111111\oplus {x}_1{x}_2\cdots {x}_8\right)}_2\\ {}={\left(1\oplus {x}_1,1\oplus {x}_2,\cdots, 1\oplus {x}_8\right)}_2\end{array}},$$
(56)

where the i-th operation

$$1\oplus x_i=\left\{\begin{array}{c}0\;\text{if}\;x_i=1\\1\;\text{if}\;x_i=0\end{array}\right..$$
(57)

On the other side, (255-x)10 = (11111111- x1x2x3x4x5x6x7x8)2, where the i-th operation

$$1-x_i=\left\{\begin{array}{c}0\;\text{if}\;x_i=1\\1\;\text{if}\;x_i=0\end{array}\right.$$
(58)

There is neither carry nor borrow after the corresponding position subtraction. Comparing Eqs. (57) and Eq. (58),we get

$$255\oplus x=255-x.$$
(59)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, M. & Fan, H. Cryptanalysis of a color image encryption using minimax differential evolution-based 7D hyper-chaotic map. Multimed Tools Appl 82, 44209–44225 (2023). https://doi.org/10.1007/s11042-023-15445-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15445-3

Keywords

Navigation