Skip to main content
Log in

Species-level microfossil identification for globotruncana genus using hybrid deep learning algorithms from the scratch via a low-cost light microscope imaging

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Paleontologists generally use a low-cost electro-optical system to classify microfossils. This manual identification is a time-consuming process and it may take about a long time, especially if there are thousands of microfossil samples. In order to solve this problem, we propose a hybrid method based on Convolutional Neural Networks (CNN) and Bidirectional/Long Short-Time Memory (LSTM/BiLSTM) networks for the automatic classification of Globotruncana microfossil species. First, the images of microfossil samples were collected with a low-cost system and labeled by a paleontologist. After preprocessing, the classification is carried out with different combinations of CNN, LSTM, and Bidirectional LSTM (BiLSTM) models from the scratch developed in this paper. Finally, detailed experimental analyses have been made using accuracy, sensitivity, specificity, precision, F-score, and area under curve metrics. In the existing literature, as far as we know, this study is the first investigation work of prediction Globotruncana microfossil species using hybrid deep learning algorithms. Experiments demonstrate that the proposed models have reached the best accuracy with 97.35% and the best AUC score of 0.968 for automatic identification of Globotruncana microfossil species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ali A, Zhu Y, Chen Q, et al (2019) Leveraging Spatio-temporal patterns for predicting citywide traffic crowd flows using deep hybrid neural networks. In: 2019 IEEE 25th international conference on parallel and distributed systems (ICPADS). IEEE, pp 125–132

  2. Ali A, Zhu Y, Zakarya M (2021) A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing. Multimed Tools Appl 80:31401–31433. https://doi.org/10.1007/s11042-020-10486-4

    Article  Google Scholar 

  3. Anderson TI, Vega B, Kovscek AR (2020) Multimodal imaging and machine learning to enhance microscope images of shale. Comput Geosci 145:104593. https://doi.org/10.1016/j.cageo.2020.104593

    Article  Google Scholar 

  4. Bhadoria R (2019) The biometric computing: recognition and registration. CRC Press

  5. Bolli HM (1957) The genera Praeglobotruncana, Rotalipora, Globotruncana and Abathomphalus in the upper Cretaceous of Trinidad, BWI. US Natl Museum Bull 215:51–60

    Google Scholar 

  6. Bollmann J, Quinn PS, Vela M, Brabec B, Brechner S, Cortés MY, Hilbrecht H, Schmidt DN, Schiebel R, Thierstein HR (2005) Automated particle analysis: calcareous microfossils. In: Image Analysis, Sediments and Paleoenvironments. Kluwer Academic Publishers, Dordrecht, pp. 229–252

  7. Brönnimann P (1952) Globigerinidae from the upper cretaceous Cenomanian-Maestrichtian of Trinidad, BWI. Paleontological Research Institution, Ithaca, N.Y

    Google Scholar 

  8. Bronnimann P, Brown NK (1956) Taxonomy of the Globotruncanidae. Eclogae Geol Helv 48:503–562

    Google Scholar 

  9. Brotzen F (1942) Die Foraminiferengattung Gavelinella nov. gen. und die Systematik der Rotaliiformes. Kungl. boktryckeriet P.A. Norstedt

  10. Cai L, Gao J, Zhao D (2020) A review of the application of deep learning in medical image classification and segmentation. Ann Transl Med 8:713–713. https://doi.org/10.21037/atm.2020.02.44

    Article  Google Scholar 

  11. Caron M (1985) Cretaceous Planktic foraminifera. In: Bolli HM, Saunders JB, Perch Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 17–86

    Google Scholar 

  12. Carvalho LE, Fauth G, Baecker Fauth S, Krahl G, Moreira AC, Fernandes CP, von Wangenheim A (2020) Automated microfossil identification and segmentation using a deep learning approach. Mar Micropaleontol 158:101890. https://doi.org/10.1016/j.marmicro.2020.101890

    Article  Google Scholar 

  13. Cetin O (2022) Accent recognition using a spectrogram image feature-based convolutional neural network. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-07086-9

  14. Charles JJ (2011) Automatic recognition of complete palynomorphs in digital images. Mach Vis Appl 22:53–60. https://doi.org/10.1007/s00138-009-0200-4

    Article  Google Scholar 

  15. Chen C, Hua Z, Zhang R, Liu G, Wen W (2020) Automated arrhythmia classification based on a combination network of CNN and LSTM. Biomed Signal Process Control 57:101819. https://doi.org/10.1016/j.bspc.2019.101819

    Article  Google Scholar 

  16. Cushman JA (1927) An outline of a reclassification of the foraminifera. Contrib from Cushman Lab Foraminifer Res 3:1–105

    Google Scholar 

  17. Díez-Pastor JF, Latorre-Carmona P, Arnaiz-González Á, Ruiz-Pérez J, Zurro D (2020) You are not my type: an evaluation of classification methods for automatic Phytolith identification. Microsc Microanal 26:1158–1167. https://doi.org/10.1017/S1431927620024629

    Article  Google Scholar 

  18. Elder LE, Hsiang AY, Nelson K, Strotz LC, Kahanamoku SS, Hull PM (2018) Data descriptor: sixty-one thousand recent planktonic foraminifera from the Atlantic Ocean. Sci Data 5:1–12. https://doi.org/10.1038/sdata.2018.109

    Article  Google Scholar 

  19. Encyclopædia Britannica (2017) Paleontology science

  20. Gorur K, Bozkurt M, Bascil M, Temurtas F (2019) GKP signal processing using deep CNN and SVM for tongue-machine Interface. Trait du Signal 36:319–329. https://doi.org/10.18280/ts.360404

    Article  Google Scholar 

  21. Gorur K, Kaya Ozer C, Ozer I, Can Karaca A, Cetin O, Kocak I (2022) Species-level microfossil prediction for Globotruncana genus using machine learning models. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-06822-5

  22. Harlan Johnson J (1944) Paleontology, petroleum, and the search for oil. Am Assoc Pet Geol Bull 28:902–908. https://doi.org/10.1306/3d93368e-16b1-11d7-8645000102c1865d

    Article  Google Scholar 

  23. Hossin M, Sulaiman M (2015) A review on evaluation metrics for data classification evaluations. Int J Data Min Knowl Manag Process 5:01–11. https://doi.org/10.5121/ijdkp.2015.5201

    Article  Google Scholar 

  24. Hou Y, Cui X, Canul-Ku M, Jin S, Hasimoto-Beltran R, Guo Q, Zhu M (2020) ADMorph: a 3D digital microfossil morphology dataset for deep learning. IEEE Access 8:148744–148756. https://doi.org/10.1109/ACCESS.2020.3016267

    Article  Google Scholar 

  25. Hou Y, Canul-Ku M, Cui X, Hasimoto-Beltran R, Zhu M (2021) Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach. J Micropalaeontol 40:163–173. https://doi.org/10.5194/jm-40-163-2021

    Article  Google Scholar 

  26. Hsiang AY, Brombacher A, Rillo MC, Mleneck-Vautravers MJ, Conn S, Lordsmith S, Jentzen A, Henehan MJ, Metcalfe B, Fenton IS, Wade BS, Fox L, Meilland J, Davis CV, Baranowski U, Groeneveld J, Edgar KM, Movellan A, Aze T, … Hull PM (2019) Endless Forams: >34,000 modern planktonic foraminiferal images for taxonomic training and automated species recognition using convolutional neural networks. Paleoceanogr Paleoclimatology 34:1157–1177. https://doi.org/10.1029/2019PA003612

    Article  Google Scholar 

  27. Huber BT, MacLeod KG, Tur NA (2008) Chronostratigraphic framework for upper Campanian-Maastrichtian sediments on the Blake nose (subtropical North Atlantic). J Foraminifer Res 38:162–182. https://doi.org/10.2113/gsjfr.38.2.162

    Article  Google Scholar 

  28. Islam MZ, Islam MM, Asraf A (2020) A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Inf Med Unlocked 20:100412. https://doi.org/10.1016/j.imu.2020.100412

    Article  Google Scholar 

  29. Itaki T, Taira Y, Kuwamori N, Maebayashi T, Takeshima S, Toya K (2020) Automated collection of single species of microfossils using a deep learning–micromanipulator system. Prog Earth Planet Sci 7:19. https://doi.org/10.1186/s40645-020-00332-4

  30. Itaki T, Taira Y, Kuwamori N, Saito H, Ikehara M, Hoshino T (2020) Innovative microfossil (radiolarian) analysis using a system for automated image collection and AI-based classification of species. Sci Rep 10:21136. https://doi.org/10.1038/s41598-020-77812-6

    Article  Google Scholar 

  31. Johansen TH, Sørensen SA (2020) Towards detection and classification of microscopic foraminifera using transfer learning. Proc North Light Deep Learn Work 1:6. https://doi.org/10.7557/18.5144

    Article  Google Scholar 

  32. Karaderi T, Burghardt T, Hsiang AY, et al (2022) Visual microfossil identification via deep metric learning. In: Lecture Notes in Computer Science. pp. 34–46

  33. Keçeli AS, Kaya A, Keçeli SU (2017) Classification of radiolarian images with hand-crafted and deep features. Comput Geosci 109:67–74. https://doi.org/10.1016/j.cageo.2017.08.011

    Article  Google Scholar 

  34. Ketin İ, Gümüş A (1963) Sinop – Ayancık güneyinde üçüncü bölgeye dahil sahaların jeolojisi hakkında rapor (2. kısım : Jura ve Kretase formasyonlarının etüdü).Report No. 288. Ankara

  35. Laporte LF (1988) What, after all, is paleontology? Palaios 3:453

    Article  Google Scholar 

  36. Li J, Li X, He D (2019) A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access 7:75464–75475. https://doi.org/10.1109/ACCESS.2019.2919566

    Article  Google Scholar 

  37. Liu X, Jiang S, Wu R, et al (2022) Automatic taxonomic identification based on the fossil image dataset (>415,000 images) and deep convolutional neural networks. Paleobiology 1–22. https://doi.org/10.1017/pab.2022.14

  38. Marchant R, Tetard M, Pratiwi A, Adebayo M, de Garidel-Thoron T (2020) Automated analysis of foraminifera fossil records by image classification using a convolutional neural network. J Micropalaeontol 39:183–202. https://doi.org/10.5194/jm-39-183-2020

    Article  Google Scholar 

  39. Marmo R, Amodio S, Cantoni V (2006) Microfossils shape classification using a set of width values. Proc - Int Conf Pattern Recognit 1:691–694. https://doi.org/10.1109/ICPR.2006.797

    Article  Google Scholar 

  40. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298. https://doi.org/10.1016/S0001-2998(78)80014-2

    Article  Google Scholar 

  41. Mitra R, Marchitto TM, Ge Q, Zhong B, Kanakiya B, Cook MS, Fehrenbacher JS, Ortiz JD, Tripati A, Lobaton E (2019) Automated species-level identification of planktic foraminifera using convolutional neural networks, with comparison to human performance. Mar Micropaleontol 147:16–24. https://doi.org/10.1016/j.marmicro.2019.01.005

    Article  Google Scholar 

  42. Oh SL, Ng EYK, Tan RS, Acharya UR (2018) Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med 102:278–287. https://doi.org/10.1016/j.compbiomed.2018.06.002

    Article  Google Scholar 

  43. Ostrom JH (2020) Stratigraphy and paleontology of the Cloverly formation (lower cretaceous) of the Bighorn basin area, Wyoming and Montana. Yale University Press

  44. Ozer I (2020) Uzun Kısa Dönem Bellek Ağlarını Kullanarak Erken Aşama Diyabet Tahmini. Mühendislik Bilim ve Araştırmaları Derg 2:50–57. https://doi.org/10.46387/bjesr.790225

    Article  Google Scholar 

  45. Ozer I, Cetin O, Gorur K, Temurtas F (2021) Improved machine learning performances with transfer learning to predicting need for hospitalization in arboviral infections against the small dataset. Neural Comput & Applic 33:14975–14989. https://doi.org/10.1007/S00521-021-06133-0/TABLES/7

    Article  Google Scholar 

  46. Ozer I, Efe SB, Ozbay H (2021) A combined deep learning application for short term load forecasting. Alex Eng J 60:3807–3818. https://doi.org/10.1016/j.aej.2021.02.050

    Article  Google Scholar 

  47. Pedraza A, Bueno G, Deniz O, Cristóbal G, Blanco S, Borrego-Ramos M (2017) Automated diatom classification (part B): a deep learning approach. Appl Sci 7:460. https://doi.org/10.3390/app7050460

    Article  Google Scholar 

  48. Pessagno EA (1967) Upper cretaceous planktonic foraminifera from the Western gulf coastal plain. Paleontological Research Institution

  49. Petrizzo MR (2002) Palaeoceanographic and palaeoclimatic inferences from late cretaceous planktonic foraminiferal assemblages from the Exmouth plateau (ODP sites 762 and 763, eastern Indian Ocean). Mar Micropaleontol 45:117–150. https://doi.org/10.1016/S0377-8398(02)00020-8

    Article  Google Scholar 

  50. Petrizzo MR, Falzoni F, Silva IP (2011) Identification of the base of the lower-to-middle Campanian Globotruncana ventricosa zone: comments on reliability and global correlations. Cretac Res 32:387–405. https://doi.org/10.1016/j.cretres.2011.01.010

    Article  Google Scholar 

  51. Pires de Lima R, Bonar A, Coronado DD et al (2019) Deep convolutional neural networks as a geological image classification tool. Sediment Rec 17:4–9. https://doi.org/10.2110/sedred.2019.2.4

    Article  Google Scholar 

  52. Pires De Lima R, Welch KF, Barrick JE et al (2020) Convolutional neural networks as an aid to biostratigraphy and micropaleontology: a test on late Paleozoic microfossils. Palaios 35:391–402. https://doi.org/10.2110/palo.2019.102

    Article  Google Scholar 

  53. Postuma JA (1971) Manual of planktonic foraminifera. 1–406

  54. Prothero DR (2007) Evolution: what the fossils say and why it matters. Colombia University Press

  55. Rafi SH, Nahid-Al-Masood DSR, Hossain E (2021) A short-term load forecasting method using integrated CNN and LSTM network. IEEE Access 9:32436–32448. https://doi.org/10.1109/ACCESS.2021.3060654

    Article  Google Scholar 

  56. Rawat W, Zenghu W (2018) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29:2352–2449. https://doi.org/10.1162/NECO

    Article  MathSciNet  MATH  Google Scholar 

  57. Rehn E, Rehn A, Possemiers A (2019) Fossil charcoal particle identification and classification by two convolutional neural networks. Quat Sci Rev 226:106038. https://doi.org/10.1016/j.quascirev.2019.106038

    Article  Google Scholar 

  58. Reichel M (1950) Observations sur les Globotruncana du gisement de la Breggia (Tessin). Eclogae Geol Helv 42:596–617

    Google Scholar 

  59. Renaudie J, Gray R, Lazarus D (2018) Accuracy of a neural net classification of closely-related species of microfossils from a sparse dataset of unedited images. 0–15. https://doi.org/10.7287/peerj.preprints.27328v1

  60. Rhanoui M, Mikram M, Yousfi S, Barzali S (2019) A CNN-BiLSTM model for document-level sentiment analysis. Mach Learn Knowl Extr 1:832–847. https://doi.org/10.3390/make1030048

    Article  Google Scholar 

  61. Robaszynski F, Foraminifera. EWG on P, (France) M de la géologie (1984) Atlas of late cretaceous Globotruncanids. The Group, Paris

  62. Singh LK, Pooja GH et al (2021) An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus. Med Biol Eng Comput 59:333–353. https://doi.org/10.1007/s11517-020-02307-5

    Article  Google Scholar 

  63. Solano GA, Gasmen P, Marquez EJ (2019) Radiolarian classification decision support using supervised and unsupervised learning approaches. 2018 9th Int Conf information, Intell Syst Appl IISA 2018. https://doi.org/10.1109/IISA.2018.8633617

  64. Waikato TU of (2021) https://sci.waikato.ac.nz/evolution/fossils.shtml. Accessed 07. 08. 2022

  65. Xiang L, Wang P, Yang X, Hu A, Su H (2021) Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism. Measurement 175:109094. https://doi.org/10.1016/j.measurement.2021.109094

    Article  Google Scholar 

  66. Xiao S, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24:31–40. https://doi.org/10.1016/j.tree.2008.07.015

    Article  Google Scholar 

  67. Xu Y, Dai Z, Wang J, Li Y, Wang H (2020) Automatic recognition of palaeobios images under microscope based on machine learning. IEEE Access 8:172972–172981. https://doi.org/10.1109/ACCESS.2020.3024819

    Article  Google Scholar 

  68. Yang S, Berdine G (2017) The receiver operating characteristic (ROC) curve. Southwest Respir Crit Care Chronicles 5:34. https://doi.org/10.12746/swrccc.v5i19.391

    Article  Google Scholar 

  69. Yasuhara M, Huang H-H, Hull P, et al (2020) Time machine biology: cross-timescale integration of ecology, evolution, and oceanography. Oceanography 33:. https://doi.org/10.5670/oceanog.2020.225

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onursal Cetin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, I., Ozer, C.K., Karaca, A.C. et al. Species-level microfossil identification for globotruncana genus using hybrid deep learning algorithms from the scratch via a low-cost light microscope imaging. Multimed Tools Appl 82, 13689–13718 (2023). https://doi.org/10.1007/s11042-022-13810-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13810-2

Keywords

Navigation