Skip to main content
Log in

Image-based crack detection approaches: a comprehensive survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Automatic crack detection is a challenging task that has been researched for decades due to the complex civil structures. Cracks on any structure are early signs of the deterioration of the object’s surface. Therefore, detection and regular maintenance of cracks are necessary tasks as the propagation of cracks results in severe damage. Manual inspection is based on the expert’s previous knowledge, and it can only be done in reachable human areas. On the other hand, autonomous detection of cracks by using image-based techniques may reduce human errors, less time-consuming, and more economical than human-based inspection for real-time crack detection. Since movable cameras can capture images for non-reachable areas, several techniques are available for crack detection. Several techniques are available for crack detection; however, image-based crack detection techniques have been analyzed in this survey. A detailed study is carried out to define the research problems and advancements in this area. This article analyses the pure image processing techniques and learning-based techniques based on the objectives, the methods, level of efficiency, level of errors, and type of crack image dataset. Besides the applications, limitations and other factors are explained for each technique. Moreover, the presented analysis shows the multiple problems related to cracks that could help the researcher perform further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Aggarwal A, Kumar M (2021) Image surface texture analysis and classification using deep learning. Multimed Tools Appl 80:1289–1309. https://doi.org/10.1007/s11042-020-09520-2

    Article  Google Scholar 

  2. Ai Q, Yuan Y (2019) Rapid acquisition and identification of structural defects of metro tunnel. Sensors 19(19):4278. https://doi.org/10.3390/s19194278

    Article  Google Scholar 

  3. Ali L, Alnajjar F, Jassmi HA, Gochoo M, Khan W, Serhani MA (2021) Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures. Sensors 21(5):1688. https://doi.org/10.3390/s21051688

    Article  Google Scholar 

  4. Ansari MA, Singh DK (2020) Human detection techniques for real time surveillance: a comprehensive survey. Multimed Tools Appl:1–50. https://doi.org/10.1007/s11042-020-10103-4

  5. Attard, Leanne, et al. (2019) “Automatic crack detection using mask R-CNN.” 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE https://doi.org/10.1109/ISPA.2019.8868619

  6. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Machine Intell 39.12:2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  7. Bang S, Park S, Kim H, Kim H (2019) Encoder–decoder network for pixel-level road crack detection in black-box images. Comput-Aid Civil Infrast Eng 34(8):713–727. https://doi.org/10.1111/mice.12440

    Article  Google Scholar 

  8. Çağlar FO, Özgenel R (2019) Concrete crack images for classification. Mendeley Data 2. https://data.mendeley.com/datasets/5y9wdsg2zt/2. Accessed 14 Jan 2021

  9. Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil Infrast Eng 32(5):361–378. https://doi.org/10.1111/mice.12263

    Article  Google Scholar 

  10. Chaiyasarn, Krisada, et al. “Crack detection in masonry structures using convolutional neural networks and support vector machines.” ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction. Vol. 35. IAARC Publications, 2018 https://doi.org/10.22260/ISARC2018/0016

  11. Chaiyasarn K et al (2018) Crack detection in historical structures based on convolutional neural network. Intl J of Geomate 15(51):240–251. https://doi.org/10.21660/2018.51.35376

    Article  Google Scholar 

  12. Chen, Xiaolong, et al. “An Automatic Concrete Crack-Detection Method Fusing Point Clouds and Images Based on Improved Otsu’s Algorithm.” Sensors 21.5 (2021): 1581. https://doi.org/10.3390/s21051581

  13. Cho H, Yoon H, Jung J (2018) Image-based crack detection using crack width transform (CWT) algorithm. IEEE Access 6:60100–60114. https://doi.org/10.1109/ACCESS.2018.2875889

    Article  Google Scholar 

  14. Choi W, Cha Y-J (2019) SDDNet: real-time crack segmentation. IEEE Trans Ind Electron 67(9):8016–8025. https://doi.org/10.1109/TIE.2019.2945265

    Article  Google Scholar 

  15. Choudhary GK, Dey S (2012) “Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks.” 2012 IEEE fifth international conference on advanced computational intelligence (ICACI). IEEE, doi: https://doi.org/10.1109/ICACI.2012.6463195.

  16. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  17. Dhital D, Lee J-R (2012) A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation. Exp Mech 52(8):1111–1122. https://doi.org/10.1007/s11340-011-9567-z

    Article  Google Scholar 

  18. Ding H, et al. (2018) “Study on the grade evaluation of highway tunnel cracks based on PFC simulation and BP neural network.” GeoShanghai International Conference. Springer, Singapore https://doi.org/10.1007/978-981-13-0017-2.

  19. Dorafshan S, Thomas RJ, Maguire M (2018) SDNET2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief 21:1664–1668. https://doi.org/10.1016/j.dib.2018.11.015

    Article  Google Scholar 

  20. EdmCrack600. https://drive.google.com/file/d/1TJ10eoUmd3N2SBBalzj3On9J3S4xJu6M/view?usp=sharing. Accessed 21 Feb 2021

  21. Eisenbach, M., Stricker, R., Seichter, D., Amende, K., Debes, K., Sesselmann, M., & Gross, H. M. (2017). How to get pavement distress detection ready for deep learning? A systematic approach. In 2017 international joint conference on neural networks (IJCNN) (pp. 2039-2047) IEEE https://doi.org/10.1109/IJCNN.2017.7966101

  22. Feature Refinement and Filter Network for Person Re-identification (2020). IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2020.3043026

  23. Feng C et al (2020) Automatic pixel-level crack detection on dam surface using deep convolutional network. Sensors 20(7):2069. https://doi.org/10.3390/s20072069

    Article  Google Scholar 

  24. Fu-Chen C, Jahanshahi MR (2020) ARF-crack: rotation invariant deep fully convolutional network for pixel-level crack detection. Mach Vis Appl 31(6):1–12. https://doi.org/10.1007/s00138-020-01098-x

    Article  Google Scholar 

  25. Garcia-Garcia A, et al. (2017) “A review on deep learning techniques applied to semantic segmentation.” arXiv preprint arXiv:1704.06857

  26. Girshick R Fast R-CNN. (2015) In proceedings of the 2015 IEEE international conference on computer vision, Santiago, Chile, 7–13 December 2015 https://doi.org/10.1109/ICCV.2015.169

  27. Girshick R, Donahue J, Darrell T, Malik J (2014) “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, ser. CVPR ‘14. Washington, DC, USA: IEEE Computer Society, pp. 580–587, https://doi.org/10.1109/CVPR.2014.81

  28. Gong, Qimin, et al. (2018) “A Tunnel Crack Identification Algorithm with Convolutional Neural Networks.” 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, https://doi.org/10.1109/ITOEC.2018.8740390.

  29. Hao M et al (2017) An improved neuron segmentation model for crack detection–image segmentation model. Cybern Inf Technol 17.2:119–133. https://doi.org/10.1515/cait-2017-0021

    Article  MathSciNet  Google Scholar 

  30. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the 2016 IEEE computer society conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30. https://doi.org/10.1109/CVPR.2016.90

  31. He K, Gkioxari G, Dollár P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 42(2):386–397. https://doi.org/10.1109/TPAMI.2018.2844175

    Article  Google Scholar 

  32. Hoang N (2018) Detection of surface crack in building structures using image processing technique with an improved Otsu method for image thresholding. Adv Civil Eng 2018:1–10. https://doi.org/10.1155/2018/3924120

    Article  Google Scholar 

  33. Hoang N-D, Nguyen Q-L (2018) Metaheuristic optimized edge detection for recognition of concrete wall cracks: a comparative study on the performances of Roberts, prewitt, canny, and sobel algorithms. Adv Civil Eng 2018:1–16. https://doi.org/10.1155/2018/7163580

    Article  Google Scholar 

  34. Hu GX et al (2021) Pavement Crack Detection Method Based on Deep Learning Models. Wireless Communications and Mobile Computing 2021. https://doi.org/10.1155/2021/5573590

  35. Huang H-w, Li Q-t, Zhang D-m (2018) Deep learning based image recognition for crack and leakage defects of metro shield tunnel. Tunn Undergr Space Technol 77:166–176. https://doi.org/10.1016/j.tust.2018.04.002

    Article  Google Scholar 

  36. JWSAA (2020) Joint weak saliency and attention aware for person re-identification. Neurocomputing 453:801–811. https://doi.org/10.1016/j.neucom.2020.05.106

    Article  Google Scholar 

  37. Kalfarisi R, Wu ZY, Soh K (2020) Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization. J Comput Civil Eng 34.3:04020010. https://doi.org/10.1061/(asce)cp.1943-5487.0000890

    Article  Google Scholar 

  38. Kim K-B, Cho J-H (2010) Detection of concrete surface cracks using fuzzy techniques. Journal of the Korea Institute of Information and Communication Engineering 14(6):1353–1358. https://doi.org/10.6109/jkiice.2010.14.6.1353

    Article  Google Scholar 

  39. Kim B, Cho S (2020) Automated multiple concrete damage detection using instance segmentation deep learning model. Appl Sci 10(22):8008. https://doi.org/10.3390/app10228008

    Article  Google Scholar 

  40. Kim JJ, Kim A-R, Lee S-W (2020) Artificial Neural Network-Based Automated Crack Detection and Analysis for the Inspection of Concrete Structures. Appl Sci 10.22:8105. https://doi.org/10.3390/app10228105

    Article  Google Scholar 

  41. Krizhevsky A, Sutskever I, Hinton G(2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 2012 International Conference on Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. https://doi.org/10.1129/9.205

  42. Kumare JS et al (2019) An Efficient Contrast Enhancement Technique Based on Firefly Optimization. Soft computing: theories and applications. Springer, Singapore, pp 181–192. https://doi.org/10.1007/978-981-13-0589-4_17

    Book  Google Scholar 

  43. Kylberg G (n.d.) The kylberg texture dataset v. 1.0. In Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University,External report (Blue series) No. 35. Available online at: http://www.cb.uu.se/~gustaf/texture/. Accessed 21 Mar 2021

  44. Laghrib A, Hakim A, Raghay S (2015) A combined total variation and bilateral filter approach for image robust super resolution. EURASIP J Image Video Process 2015(1):19. https://doi.org/10.1186/s13640-015-0075-4

    Article  Google Scholar 

  45. Li S, Zhao X (2019) Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Adv Civil Eng 2019:1–12. https://doi.org/10.1155/2019/6520620

    Article  Google Scholar 

  46. Li L, Wang Q, Zhang G, Shi L, Dong J, Jia P (2018) A method of detecting the cracks of concrete undergo high-temperature. Constr Build Mater 162:345–358. https://doi.org/10.1016/j.conbuildmat.2017.12.010

    Article  Google Scholar 

  47. Li Y et al (2019) YOLOv3-lite: A lightweight crack detection network for aircraft structure based on depth wise separable convolutions. Appl Sci 9.18:3781. https://doi.org/10.3390/app9183781

    Article  Google Scholar 

  48. Li G et al (2020) Automatic tunnel crack detection based on u-net and a convolutional neural network with alternately updated clique. Sensors 20.3:717. https://doi.org/10.3390/s20030717

    Article  Google Scholar 

  49. Liu Z, Shahrel A, Suandi, Ohashi T, Ejima T (2002) A Tunnel Crack Detection and Classification Systems Based on Image Processing. Machine Vis Appl Industry Inspect X 4664(145):820–8502. https://doi.org/10.1117/12.460191

    Article  Google Scholar 

  50. Liu Y, Yao J, Lu X, Xie R, Li L (2019) DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338:139–153. https://doi.org/10.1016/j.neucom.2019.01.036

    Article  Google Scholar 

  51. Luo Q, Ge B, Tian Q (2019) A fast adaptive crack detection algorithm based on a double-edge extraction operator of FSM. Constr Build Mater 204:244–254. https://doi.org/10.1016/j.conbuildmat.2019.01.150

    Article  Google Scholar 

  52. Masood A et al (2020) Automated decision support system for lung cancer detection and classification via enhanced RFCN with multilayer fusion RPN. IEEE Trans Industrial Inf 16.12:7791–7801. https://doi.org/10.1109/TII.2020.2972918

    Article  Google Scholar 

  53. Medina R et al (2017) Crack detection in concrete tunnels using a gabor filter invariant to rotation. Sensors 17(7):1670. https://doi.org/10.3390/s17071670

    Article  Google Scholar 

  54. Mehndi SM, Khan MA, Ahmad S (2014) Causes and Evaluation of Cracks in Concrete Structures. Int J Technol Res Appl 2(5):29–33

  55. Mohan A, Poobal S (2018) Crack detection using image processing: a critical review and analysis. Alexandria Eng J 57(2):787–798. https://doi.org/10.1016/j.aej.2017.01.020

    Article  Google Scholar 

  56. Niemeier W, et al. “New digital crack monitoring system for measuring and documentation of width of cracks in concrete structures.” Proc. of 13th FIG Symp. on Deformation Measurement and Analysis and 14th IAG Symp. on Geodesy for Geotechnical and Structural Engineering, Lisbon. Vol. 12. 2008. https://doi.org/10.1002/BATE.200710036

  57. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Systems, Man Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  58. Ouyang A, Luo C, Zhou C (2010) Surface distresses detection of pavement based on digital image processing. International Conference on Computer and Computing Technologies in Agriculture. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18369-0_42

    Book  Google Scholar 

  59. Özgenel ÇF, Gönenç Sorguç A. “Performance comparison of pretrained convolutional neural networks on crack detection in buildings.” ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction. Vol. 35. IAARC Publications, 2018. https://doi.org/10.22260/isarc2018/0094

  60. Park SE, Eem S-H, Jeon H (2020) Concrete crack detection and quantification using deep learning and structured light. Construct Build Mater 252:119096. https://doi.org/10.1016/j.conbuildmat.2020.119096

    Article  Google Scholar 

  61. Patra S, Middya AI, Roy S (2021) PotSpot: participatory sensing based monitoring system for pothole detection using deep learning. Multimed Tools Appl 80:25171–25195. https://doi.org/10.1007/s11042-021-10874-4

    Article  Google Scholar 

  62. Pauly L, et al (2017) “Deeper networks for pavement crack detection.” Proceedings of the 34th ISARC. IAARC. https://doi.org/10.22260/isarc2017/0066

  63. Prasanna P, Dana KJ, Gucunski N, Basily BB, la HM, Lim RS, Parvardeh H (2016) Automated crack detection on concrete bridges. IEEE Trans Autom Sci Eng 13:591–599. https://doi.org/10.1109/tase.2014.2354314

    Article  Google Scholar 

  64. Prema KA, Murali Krishna IV (2018) Pipeline crack detection using mathematical morphological operator. In: Margret AS, Wiil U (eds) Knowledge computing and its applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8258-0_2

    Chapter  Google Scholar 

  65. Qu Z, Lin L-D, Guo Y, Wang N (2015) An improved algorithm for image crack detection based on percolation model. IEEJ Trans Electr Electron Eng 10(2):214–221. https://doi.org/10.1002/tee.22056

    Article  Google Scholar 

  66. Qu Z, Guo Y, Ju FR, Liu L, Lin LD (2016) The algorithm of accelerated cracks detection and extracting skeleton by direction chain code in concrete surface image. The Imaging Sci J 64(3):119–130. https://doi.org/10.1080/13682199.2016.1146816

    Article  Google Scholar 

  67. Qu Z et al (2018) Concrete surface crack detection with the improved pre-extraction and the second percolation processing methods. PloS One 13.7:e0201109. https://doi.org/10.1371/journal.pone.0201109

    Article  Google Scholar 

  68. Rao AS et al (2020) Vision-based automated crack detection using convolutional neural networks for condition assessment of infrastructure. Struct Health Monitor. https://doi.org/10.1177/1475921720965445

  69. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788. arXiv:1506.02640

  70. Ren Y et al (2020) Image-based concrete crack detection in tunnels using deep fully convolutional networks. Construct Build Mater 234:117367. https://doi.org/10.1016/j.conbuildmat.2019.117367

    Article  Google Scholar 

  71. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. Adv Neural Inf Proces Syst 28

  72. Road traffic injuries (2020) [online] Available: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. Accessed 22 June 2021

  73. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

  74. Shahrokhinasab E et al (2020) Performance of image-based crack detection Systems in Concrete Structures. J Soft Comput Civil Eng 4(1):127–139. https://doi.org/10.22115/scce.2020.218984.1174

    Article  Google Scholar 

  75. Sharma M, Anotaipaiboon W, Chaiyasarn K (2018) Concrete crack detection using the integration of convolutional neural network and support vector machine. Sci Technol Asia:19–28. https://doi.org/10.14456/scitechasia.2018.11

  76. Shi Y, Cui L, Qi Z, Meng F, Chen Z (2016) Automatic road crack detection using random structured forests. IEEE Trans Intell Transp Syst 17(12):3434–3445. https://doi.org/10.1109/TITS.2016.2552248

    Article  Google Scholar 

  77. Simler C, Trostmann E, Berndt D (2019) “Automatic crack detection on concrete floor images,” Proc. SPIE 11144, Photonics and Education in Measurement Science, 111440T (17 September 2019) https://doi.org/10.1117/12.2531951

  78. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  79. Song Q, Wu Y, Xin X, Yang L, Yang M, Chen H, Liu C, Hu M, Chai X, Li J (2019) Real-time tunnel crack analysis system via deep learning. Ieee Access 7:64186–64197. https://doi.org/10.1109/ACCESS.2019.2916330

    Article  Google Scholar 

  80. Sridevi M, Mala C (2012) A survey on monochrome image segmentation methods. Procedia Technol 6:548–555. https://doi.org/10.1016/j.protcy.2012.10.066

    Article  Google Scholar 

  81. Sundararajan, D. (2017). Digital image processing: a signal processing and algorithmic approach. Springer

  82. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826)

  83. Talab AMA, Huang Z, Xi F, HaiMing L (2016) Detection crack in image using Otsu method and multiple filtering in image processing techniques. Optik 127(3):1030–1033. https://doi.org/10.1016/j.ijleo.2015.09.147

    Article  Google Scholar 

  84. Teng S, Liu Z, Chen G, Cheng L (2021) Concrete crack detection based on well-known feature extractor model and the YOLO_v2 network. Appl Sci 11(2):813. https://doi.org/10.3390/app11020813

    Article  Google Scholar 

  85. Tunnel collapse injuries (2021) [online]. http://timesofindia.indiatimes.com/articleshow/82848475.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst. Accessed 22 May 2021

  86. https://concretecivil.com/cracks-in-buildings/#:~:text=A%20crack%20is%20a%20complete,produced%20by%20breaking%20or%20fracturing. Accessed 21 Jan 2021

  87. Wang P, Huang H. “Comparison analysis on present image-based crack detection methods in concrete structures.” 2010 3rd international congress on image and signal processing. Vol. 5. IEEE, 2010 https://doi.org/10.1109/CISP.2010.5647496

  88. Wang X, Zhaozheng H (2017) “Grid-based pavement crack analysis using deep learning.” 2017 4th International Conference on Transportation Information and Safety (ICTIS). IEEE doi: https://doi.org/10.1109/ICTIS.2017.8047878.

  89. Wang Z et al (2020) CNN Training with Twenty Samples for Crack Detection via Data Augmentation. Sensors 20.17:4849. https://doi.org/10.3390/s20174849

    Article  Google Scholar 

  90. Xie S, Zhuowen T (2015) Holistically-nested edge detection. Proceedings IEEE Int Conf Comput Vis. https://doi.org/10.1109/ICCV.2015.164

  91. Yahya MM, Nasim U, Chenjun T, Zhenhua S (2020) Crack Detection using Faster R-CNN and Point Feature Matching. Civil Eng Res J 10(3):555790. https://doi.org/10.19080/CERJ.2020.10.555790

    Article  Google Scholar 

  92. Yamaguchi T, Hashimoto S (2010) Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach Vis Appl 21(5):797–809. https://doi.org/10.1007/s00138-009-0189-8

    Article  Google Scholar 

  93. Yang X, Li H, Yu Y, Luo X, Huang T, Yang X (2018) Automatic pixel-level crack detection and measurement using fully convolutional network. Comput-Aid Civil Infrast Eng 33(12):1090–1109. https://doi.org/10.1111/mice.12412

    Article  Google Scholar 

  94. Yang C et al (2021) Structural Crack Detection and Recognition Based on Deep Learning. Appl Sci 11.6:2868. https://doi.org/10.3390/app11062868

    Article  Google Scholar 

  95. Yu S-N, Jang J-H, Han C-S (2007) Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom Constr 16(3):255–261. https://doi.org/10.1016/j.autcon.2006.05.003

    Article  Google Scholar 

  96. Yusof NAM, Ibrahim A, Noor MHM, Tahir NM, Yusof NM, Abidin NZ, Osman MK (2019) Deep convolution neural network for crack detection on asphalt pavement. J Phys Conf Ser 1349(1):012020. IOP Publishing. https://doi.org/10.1088/1742-6596/1349/1/012020

  97. Zalama E, Gómez-García-Bermejo J, Medina R, Llamas J (2014) Road crack detection using visual features extracted by Gabor filters. Comput-Aid Civil Infrastruct Eng 29(5):342–358. https://doi.org/10.1111/mice.12042

    Article  Google Scholar 

  98. Zhang W, Zhang Z, Qi D, Liu Y (2014) Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring. Sensors 14(10):19307–19328. https://doi.org/10.3390/s141019307

    Article  Google Scholar 

  99. Zhang W, Zhang Z, Qi D, Liu Y (2014) Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors 14(10):19307–19328. https://doi.org/10.3390/s141019307

    Article  Google Scholar 

  100. Zhang L, et al (2016) “Road crack detection using deep convolutional neural network.” 2016 IEEE international conference on image processing (ICIP). IEEE. https://doi.org/10.1109/ICIP.2016.7533052.

  101. Zhang Q et al (2020) Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain. Eng. https://doi.org/10.1016/j.eng.2020.07.026

  102. Zou Q, Cao Y, Li Q, Mao Q, Wang S (2012) CrackTree: automatic crack detection from pavement images. Pattern Recogn Lett 33(3):227–238. https://doi.org/10.1016/j.patrec.2011.11.004

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Gupta.

Ethics declarations

Conflict of interest

No conflict of interest, financial or otherwise.

Consent for publication

Not Applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Dixit, M. Image-based crack detection approaches: a comprehensive survey. Multimed Tools Appl 81, 40181–40229 (2022). https://doi.org/10.1007/s11042-022-13152-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13152-z

Keywords

Navigation