Skip to main content
Log in

Deep learning-based automatic annotation and online classification of remote multimedia images

  • 1210: Computer Vision for Clinical Images
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, based on in-depth analysis of remote multimedia images, the automatic annotation and classification of graphics are tested and analyzed by algorithms of deep learning. To reduce the time of remote multimedia image labeling and online classification, and improve efficiency, we study the use of deep learning methods to automate annotation and online classification of remote multimedia images. An image is re-labeling algorithm based on modeling the correlation of hidden feature dimensions is proposed to improve the effect of hidden feature models by modeling the correlation between hid feature dimensions. The algorithm constructs the correlation between each pair of dimensions in the hidden features through the outer product operation to form a two-dimensional interactive graph. The information in the interaction graph is refined layer by layer by using the ability of the convolutional neural network to model local features, and finally, a representation of the correlation of all dimensions in the hidden features is formed to realize the re-labeling of social images. The experimental results show that this method can utilize the hidden feature information more effectively and improve the image re-labeling results. The light-weight feature extraction network significantly reduces the number of model parameters at the expense of a small amount of detection accuracy, and the FPN pyramid structure enhances the feature characterization ability of the feature extraction network. The performance is close to that of the Yolo algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Jarrah MA, Al-Dweik A, Kalil M et al (2018) Decision fusion in distributing cooperative wirelesses sensor networks[J]. IEEE Trans Veh Technol 68(1):797–811

    Article  Google Scholar 

  2. Bihari A, Djenouri Y, Lin JCW et al (2020) Trajectory outlier detection: Algorithms, taxonomy, evaluation, and open challenges[J]. ACM Trans Manag Inf Syst (TMIS) 11(3):1–29

    Article  Google Scholar 

  3. De S, Bruzzone L, Bhattacharya A et al (2017) A novel technique based on deep learning and a synthetic target database for classification of urban areas in PolSAR data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens 11(1):154-170.7

  4. Faraday A, Gross G, Nagi R et al (2016) Social network analysis with data fusion[J]. IEEE Trans Comput Soc Syst 3(2):88–99

    Article  Google Scholar 

  5. Ghamisi P, Rasti B, Yokoya N et al (2019) Multisource and multicultural data fusion in remote sensing: A comprehensive review of the state of the art[J]. IEEE Geosci Remote Sens Mag 7(1):6–39

    Article  Google Scholar 

  6. Haida AB, Benoit A, Lambert P et al (2018)3-D deep learning approach for remote sensing image classification[J]. IEEE Trans Geosci Remote Sens 56(8):4420–4434

    Article  Google Scholar 

  7. Hülsmann J, Traub J, Markl V (2020)Demand-based sensor data gathering with multi-query optimization[J]. Proc VLDB Endow 13(12):2801-2804

  8. Jalali A, Farsi H (2020) A new roentgenography algorithm based on video sparse representation[J]. Multimed Tools Appl 79(3):1821–1846

    Article  Google Scholar 

  9. Jiang L, Yan L, Xia Y et al (2017) Asynchronous multiple multisensor data fusion over unreliable measurements with correlated noise[J]. IEEE Trans Aerosp Electron Syst 53(5):2427–2437

    Article  Google Scholar 

  10. Li L, Ota K, Dong M (2018) Deep learning for smart industry: Efficient manufactures inspection system with fog computing[J]. IEEE Trans Industr Inform 14(10):4665–4673

    Article  Google Scholar 

  11. Mittal N, Singh U, Salgotra R et al (2019) An energy efficient stable clustering approach using fuzzy extended grey wolfs optimization algorithm for WSNs[J]. Wirel Netw 25(8):5151–5172

    Article  Google Scholar 

  12. Nada D, Bousbia-Salah M, Bettayeb M (2018)Multi-sensor data fusion for wheelchair position estimation with unaccented Kalman Filter[J]. Int J Autom Comput 15(2):207–217

    Article  Google Scholar 

  13. Parcheesi M, Garcia M, Lavalle M et al (2018) A machine-learning approach to PolInSAR and LiDAR data fusion for improved tropical forest canopy height estimation using NASA AfriSAR Campaign data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens 11(10):3453–3463

    Article  Google Scholar 

  14. Pierson HA, Gashler MS (2017) Deep learning in robotics: a review of recent research[J]. Adv Robot 31(16):821–835

    Article  Google Scholar 

  15. Rahu V, Tong C, Bhattacharya S et al (2018) Multimodal deep learning for activity and context recognition[J]. Proc ACM Interact Mob Wearable Ubiquitous Technol 1(4):1-27

  16. Song H, Thiagarajan J, Sattigeri P et al (2018) Optimizing kernel machines using deep learning[J]. IEEE Trans Neural Netw Learn Syst 29(11):5528–5540

    Article  Google Scholar 

  17. Wu H, Zhang Z, Jiao C et al (2019) Learn to sense: a meta-learning-based sensing and fusion framework for wireless sensor networks[J]. IEEE Internet Things J 6(5):8215–8227

    Article  Google Scholar 

  18. Yuan X, Pu Y (2018) Parallel legless compressive imaging via deep convolutional neural networks[J]. Opt Express 26(2):1962–1977

    Article  Google Scholar 

  19. Zappone A, Di Renzo M, Debbah M (2019) Wireless networks design in the era of deep learning: Model-based, AI-based, or both?[J]. IEEE Trans Commun 67(10):7331–7376

    Article  Google Scholar 

  20. Zhang H, Zhou X, Wang Z et al (2018) Adaptive consensus-based distributed target tracking with dynamic cluster in sensor networks[J]. IEEE Trans Cybern 49(5):1580–1591

    Article  Google Scholar 

  21. Zhao Z, Wang X, Wang T (2018) A novel measurement data classification algorithm based on SVM for tracking closely spaced targets[J]. IEEE Trans Instrum Meas 68(4):1089–1100

    Article  Google Scholar 

  22. Zhou Q, Zheng Y (2020) Long link wireless sensor routing optimization based on improved adaptive ant colony algorithm[J]. Int J Wirel Inf Netw 27(2):241–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sucheng Kang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S. Deep learning-based automatic annotation and online classification of remote multimedia images. Multimed Tools Appl 81, 36239–36255 (2022). https://doi.org/10.1007/s11042-021-11854-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11854-4

Keywords

Navigation