Skip to main content
Log in

Fractal measures of image local features: an application to texture recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Here we propose a new method for the classification of texture images combining fractal measures (fractal dimension, multifractal spectrum and lacunarity) with local binary patterns. More specifically we compute the box counting dimension of the local binary codes thresholded at different levels to compose the feature vector. The proposal is assessed in the classification of three benchmark databases: KTHTIPS-2b, UMD and UIUC as well as in a real-world problem, namely the identification of Brazilian plant species (database 1200Tex) using scanned images of their leaves. The proposed method demonstrated to be competitive with other state-of-the-art solutions reported in the literature. Such results confirmed the potential of combining a powerful local coding description with the multiscale information captured by the fractal dimension for texture classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahonen T, Matas J, He C, Pietikäinen M (2009) Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg AB, Hardeberg JY, Jenssen R (eds) Image analysis. Springer, Berlin, pp 61–70

  2. Bruna J, Mallat S (2013) Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell 35(8):1872–1886

    Article  Google Scholar 

  3. Casanova D, de Mesquita Sá Junior JJ, Bruno OM (2009) Plant leaf identification using gabor wavelets. Int J Imaging Syst Technol 19 (3):236–243

    Article  Google Scholar 

  4. Chan T, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) Pcanet: A simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032

    Article  MathSciNet  Google Scholar 

  5. Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A (2014) Describing textures in the wild. In: Proceedings of the 2014 IEEE Conference on computer vision and pattern recognition. 3606–3613. IEEE Computer Society, Washington

  6. Cimpoi M, Maji S, Kokkinos I, Vedaldi A (2016) Deep filter banks for texture recognition, description, and segmentation. Int J Comput Vis 118 (1):65–94

    Article  MathSciNet  Google Scholar 

  7. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  8. Dhal KG, Galvez J, Ray S, Das A, Das S (2020) Acute lymphoblastic leukemia image segmentation driven by stochastic fractal search. Multimed Tools Appl 79(17-18):12227–12255

    Article  Google Scholar 

  9. Falconer K (2004) Fractal geometry: mathematical foundations and applications. Wiley, New York

    MATH  Google Scholar 

  10. Florindo JB, Bruno OM (2017) Discrete schroedinger transform for texture recognition. Inform Sci 415:142–155

    Article  Google Scholar 

  11. Florindo JB, Casanova D, Bruno OM (2018) A gaussian pyramid approach to bouligand-minkowski fractal descriptors. Inform Sci 459:36–52

    Article  MathSciNet  Google Scholar 

  12. Gao TJ, Zhao D, Zhang TW, Jin T, Ma SG, Wang ZH (2020) Strain-rate-sensitive mechanical response, twinning, and texture features of NiCoCrFe high-entropy alloy: experiments, multi-level crystal plasticity and artificial neural networks modeling. J Alloys Compd, 845

  13. Gonçalves W N, da Silva NR, da Fontoura Costa L, Bruno OM (2016) Texture recognition based on diffusion in networks. Inform Sci 364(C):51–71

    Article  Google Scholar 

  14. Grochalski K, Wieczorowski M, Pawlus P, H’Roura J (2020) Thermal sources of errors in surface texture imaging. Materials 13(10)

  15. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19 (6):1657–1663

    Article  MathSciNet  Google Scholar 

  16. Hayman E, Caputo B, Fritz M, Eklundh JO Pajdla T, Matas J (eds) (2004) On the significance of real-world conditions for material classification. Springer, Berlin

  17. Ho TK (1995) Random decision forests. In: Proceedings of the third international conference on document analysis and recognition (Volume 1) - Volume 1. ICDAR ’95. IEEE Computer Society, Washington, p 278

  18. Jolliffe I (2002) Principal component analysis. Springer Series in Statistics. Springer, Berlin

    Google Scholar 

  19. Kannala J, Rahtu E (2012) Bsif: Binarized statistical image features. In: ICPR. IEEE Computer Society, pp 1363–1366

  20. Kenkel N (2013) Sample size requirements for fractal dimension estimation. Community Ecol 14(2):144–152

    Article  Google Scholar 

  21. Krishnamoorthi N, Chinnababu VK (2019) Hybrid feature vector based detection of glaucoma. Multimedi Tools Appl 78(24):34247–34276

    Article  Google Scholar 

  22. Krzanowski WJ (ed) (1988) Principles of multivariate analysis: a user’s perspective. Oxford University Press, Inc., New York

  23. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  24. Liu J, Chen Y, Sun S (2019) A novel local texture feature extraction method called multi-direction local binary pattern. Multimed Tools Appl 78(13):18735–18750

    Article  Google Scholar 

  25. Liu L, Zhao L, Long Y, Kuang G, Fieguth P (2012) Extended local binary patterns for texture classification. Image Vision Comput 30(2):86–99

    Article  Google Scholar 

  26. Mandelbrot BB (1983) The fractal geometry of nature, 3rd edn. W. H. Freeman and Comp., New York

    Google Scholar 

  27. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    Article  MathSciNet  Google Scholar 

  28. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  29. Pentland AP (973) Fractal-based description. In: Proceedings of the eighth international joint conference on artificial intelligence - volume 2. IJCAI’83. Morgan Kaufmann Publishers Inc., San Francisco

  30. Posadas A, Gimenez D, Bittelli M, Vaz C, Flury M (2001) Multifractal characterization of soil particle-size distributions. Soil Sci Soc Am J 65 (5):1361–1367

    Article  Google Scholar 

  31. Quan Y, Xu Y, Sun Y, Luo Y (2014) Lacunarity analysis on image patterns for texture classification. In: 2014 IEEE conference on computer vision and pattern recognition, pp 160–167

  32. Russ J (1994) Fractal surfaces. Fractal Surfaces. Springer, Berlin

    Book  Google Scholar 

  33. da S Oliveira MW, Casanova D, Florindo JB, Bruno OM (2014) Enhancing fractal descriptors on images by combining boundary and interior of minkowski dilation. Physica A 416:41–48

    Article  Google Scholar 

  34. Taraschi G, Florindo JB (2020) Computing fractal descriptors of texture images using sliding boxes: An application to the identification of Brazilian plant species. Physica A 545

  35. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1):61–81

    Article  Google Scholar 

  36. Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31 (11):2032–2047

    Article  Google Scholar 

  37. Verma G, Luciani ML, Palombo A, Metaxa L, Panzironi G, Pediconi F, Giuliani A, Bizzarri M, Todde V (2018) Microcalcification morphological descriptors and parenchyma fractal dimension hierarchically interact in breast cancer: A diagnostic perspective. Comput Biol Med 93:1–6

    Article  Google Scholar 

  38. Xu Y, Ji H, Fermüller C (2009) Viewpoint invariant texture description using fractal analysis. Int J Comput Vis 83(1):85–100

    Article  Google Scholar 

  39. Xu Y, Yang X, Ling H, Ji H (2010) A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: CVPR, IEEE Computer Society, pp 161–168

  40. Yang Q, Peng F, Li JT, Long M (2016) Image tamper detection based on noise estimation and lacunarity texture. Multimed Tools Appl 75(17):10201–10211

    Article  Google Scholar 

  41. Zaghloul R (2019) Hiary H. A multifractal edge detector (online). Multimedia Tools and Applications, Al-Zoubi, MB

    Google Scholar 

  42. Zaghloul R, Hiary H, Al-Zoubi MB (2020) A multifractal edge detector. Multimed Tools Appl 79(9-10):5807–5828

    Article  Google Scholar 

  43. Zhang J, Liu Y, Yan K, Fang B (2019) A fractal model for predicting thermal contact conductance considering elasto-plastic deformation and base thermal resistances. J Mech Sci Technol 33(1):475–484

    Article  Google Scholar 

  44. Zhang P, Barad H, Martinez A (1990) Fractal dimension estimation of fractional brownian motion. In: IEEE Proceedings on Southeastcon, vol 3, pp 934–939

  45. Zheng Q, Fan J, Li X, Wang S (2018) Fractal model of gas diffusion in fractured porous media. Fractals 26(03):1850035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao B. Florindo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. B. F. gratefully acknowledges the financial support of São Paulo Research Foundation (FAPESP) (Grant #2016/16060-0) and from National Council for Scientific and Technological Development, Brazil (CNPq) (Grants #301480/2016-8 and #423292/2018-8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, P.M., Florindo, J.B. Fractal measures of image local features: an application to texture recognition. Multimed Tools Appl 80, 14213–14229 (2021). https://doi.org/10.1007/s11042-020-10369-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10369-8

Keywords

Navigation