Skip to main content
Log in

Efficient scalable spatiotemporal visual tracking based on recurrent neural networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Robust and accurate visual tracking is challenging as targets undergo significant changes in appearance by scale variance, occlusion and fast motion. We propose a novel tracking framework, called scalable spatiotemporal visual tracking algorithm (SSVT). First, we construct the Direction Prediction Model (DPM) to predict the spatiotemporal correlation of the target in the next frame. That will efficiently narrow down the search area and improve the accuracy of spatial location. Then, Occlusion Detection algorithm (ODA) is presented to overcome the wrong updates stemming from the region of interest (ROI) based on the estimated direction and Kalman filter. Finally, the multi-scale pyramid kernelized correlation filter (MSPKCF) is presented in tracking to realize the adaptive adjustment of the varying scales of the targets and the ROI size. Extensive experiments on OTB100 and VOT2016 datasets demonstrate that our tracker performs favorably against state-of-the-art trackers, which can effectively reduce computation redundancy and improve tracking accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  2. Bhat G, Johnander J, Danelljan M, Khan FS, Felsberg M (2018) Unveiling the power of deep tracking. In: Proceedings of European conference on computer vision, pp 1–22

    Chapter  Google Scholar 

  3. Bolme DS, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: IEEE Computer society conference on computer vision and pattern recognition, pp 1–8

  4. Cliff DT (1992) Neural networks for visual tracking in an artificial fly. In: Varela FJ, Bourgine P (eds) Towards a practice of autonomous systems. Proceedings of the first European conference on artificial life (ECAL 91). MIT Press Bardford Books, Cambridge, pp 78–87

  5. Cui Z, Xiao S, Feng J, Yan S (2016) Recurrently target-attending tracking. In: The IEEE Conference on computer vision and pattern recognition, pp 1449–1458

  6. Danelljan M, Bhat G, Khan FS, Felsberg M (2017) Efficient convolution operators for tracking. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), pp 6931–6939

  7. Danelljan M, Hager G, Khan FS, Felsberg M (2015) Convolutional features for correlation filter based visual tracking. In: The IEEE International conference on computer vision (ICCV) workshops, pp 58–66

  8. Danelljan M, Hager G, Khan FS, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: 2015 IEEE International conference on computer vision (ICCV), pp 4310–4318

  9. Danelljan M, Robinson A, Khan FS, Felsberg M (2016) Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Proceedings of European conference on computer vision, pp 472–488

    Chapter  Google Scholar 

  10. Danelljan M, Hager G, Khan FS, Felsberg M (2017) Discriminative scale space tracking. IEEE Trans Pattern Anal Mach Intell 39(8):1561–1575

    Article  Google Scholar 

  11. Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211

    Article  Google Scholar 

  12. Fan H, Ling H (2017) Sanet: structure-aware network for visual tracking. In: The IEEE Conference on computer vision and pattern recognition, pp 2217–2224

  13. Grabner H, Leistner C, Bischof B (2008) Semi-supervised on-line boosting for robust tracking. In: European Conference on computer vision, pp 234–249

    Google Scholar 

  14. Han B, Davis L (2005) On-line density-based appearance modeling for object tracking. In: IEEE Conference on computer vision, pp 1492–1499

  15. Hare S, Golodetz S, Saffari A, Vineet V, Cheng M-M, Hicks SL (2016) Struck: structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109

    Article  Google Scholar 

  16. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  17. Huh J-H (2017) PLC-based design of monitoring system for ICT-integrated vertical fish farm. Human-Centric Comput Inf Sci 7(20):1–19

    Google Scholar 

  18. Huh J-H, Kim T-J (2019) A location-based mobile health care facility search system for senior citizens. J Supercomput 75(4):1831–1848

    Article  Google Scholar 

  19. Jia X, Lu H, Yang M-H (2012) Visual tracking via adaptive structural local sparse appearance model. In: IEEE Conference on computer vision and pattern recognition, pp 4303–4311

  20. Kahou SE, Michalski V, Memisevic R, Pal C, Vincent P (2017) Ratm: recurrent attentive tracking model. In: Computer vision and pattern recognition workshops, pp 1613–1622

  21. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 7(34):1409–1422

    Article  Google Scholar 

  22. Kristan M, Eldesokey A, Xing Y, Fan Y, Zheng Z, Zhang Z, He Z, Fernandez G, Garciamartin A, Muhic A (2017) The visual object tracking vot2017 challenge results. In: IEEE International conference on computer vision workshop

  23. Li Y, Zhu J (2015) A scale adaptive kernel correlation filter tracker with feature integration. In: Proceedings of European conference on computer vision, pp 254–265

    Chapter  Google Scholar 

  24. Li H, Li Y, Porikli F (2014) Robust online visual tracking with a single convolutional neural network. Asian conference on computer vision. Springer, Cham, pp 1–12

    Google Scholar 

  25. Li P, Wang D, Wang L, Lu H (2018) Deep visual tracking: review and experimental comparison. Pattern Recogn 76(2):323–338

    Article  Google Scholar 

  26. Ma C, Huang J-B, Yang X, Yang M-H (2015) Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 3074–3082

  27. Ma C, Huang J-B, Yang X, Yang M-H (2018) Robust visual tracking via hierarchical convolutional features. IEEE Trans Pattern Anal Mach Intell, pp 1–14

  28. MacCormick J, Blake A (2000) A probabilistic exclusion principle for tracking multiple objects. Int J Comput Vis 39(1):57–71

    Article  Google Scholar 

  29. Nam H, Han B (2016) Learning multi-domain convolutional neural networks for visual tracking. In: The IEEE Conference on computer vision and pattern recognition, pp 4293–4302

  30. Ning J, Yang J, Jiang S, Zhang L, Yang M-H (2016) Object tracking via dual linear structured SVM and explicit feature map. In: The IEEE Conference on computer vision and pattern recognition, pp 4266–4274

  31. Ning G, Zhang Z, Huang C, He Z (2017) Spatially supervised recurrent convolutional neural networks for visual object tracking. In: 2017 IEEE International symposium on circuits and systems (ISCAS). IEEE, pp 1–10

  32. Ning G, Zhang Z, Huang C, Ren X, Wang H, Cai C, He Z (2017) Spatially supervised recurrent convolutional neural networks for visual object tracking. In: IEEE International symposium on circuits and systems, pp 1–4

  33. Qi Y, Zhang S, Qin L, Yao H, Huang Q, Lim J, Yang M-H (2016) Hedged deep tracking. In: The IEEE Conference on computer vision and pattern recognition, pp 4303–4311

  34. Valmadre J, Bertinetto L, Henriques J, Vedaldi A, Torr PHS (2017) End-to-end representation learning for correlation filter based tracking. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), pp 5000–5008

  35. Wang N, Yeung D-Y (2013) Convolutional features for correlation filter based visual tracking. Adv Neural Inf Process Syst, 3119–3127

  36. Wang L, Ouyang W, Wang X, Lu H (2015) Visual tracking with fully convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 3119–3127

  37. Wang N, Li S, Gupta A, Yeung D-Y (2015) Transferring rich feature hierarchies for robust visual tracking. arXiv:1501.04587, pp 4293–4302

  38. Wang N, Zhou W, Tian Q, Hong R, Wang M, Li H (2018) Multi-cue correlation filters for robust visual tracking. In: 2018 IEEE Conference on computer vision and pattern recognition (CVPR), pp 4844–4853

  39. Wang Q, Yuan C, Wang J, Zeng W (2019) Learning attentional recurrent neural network for visual tracking. IEEE Trans Multimed 21(4):930–942

    Article  Google Scholar 

  40. Wang X, Hou Z, Yu W, Jin Z, Zha Y, Qin X (2019) Online scale adaptive visual tracking based on multilayer convolutional features. IEEE Trans Cybern 49(1):146–158

    Article  Google Scholar 

  41. Wu Y, Lim J, Yang M-H (2013) Online object tracking: a benchmark. In: IEEE Conference on computer vision and pattern recognition (CVPR)

  42. Xu X, Ma B, Chang H, Chen X (2017) Siamese recurrent architecture for visual tracking. In: IEEE International conference on image processing, pp 1152–1156

  43. Yang T, Chan AB (2018) Learning dynamic memory networks for object tracking. In: Proceedings of European conference on computer vision, pp 1–16

    Chapter  Google Scholar 

  44. Yao Y, Wu X, Zhang L, Shan S, Zuo M (2018) Joint representation and truncated inference learning for correlation filter based tracking. In: Proceedings of European conference on computer vision, pp 1–16

    Chapter  Google Scholar 

  45. Yun S, Choi J, Yoo Y, Yun K, Choi JY (2017) Action-decision networks for visual tracking with deep reinforcement learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2711–2720

  46. Zhang S, Yao H, Sun X, Liu S (2012) Robust visual tracking using an effective appearance model based on sparse coding. ACM Trans Intell Syst Technol 3 (3):1–18

    Google Scholar 

  47. Zhang K, Zhang L, Liu Q, Zhang D, Yang M-H (2014) Fast visual tracking via dense spatio-temporal context learning. In: European conference on computer vision, pp 127–141

    Chapter  Google Scholar 

  48. Zhang M, Wang Q, Xing J, Gao J, Peng P, Hu W, Mavbank S (2018) Visual tracking via spatially aligned correlation filters network. In: Proceedings of European conference on computer vision, pp 1–16

    Chapter  Google Scholar 

  49. Zhou Y, Han J, Yang F, Zhang K, Hong R (2018) Efficient correlation tracking via center-biased spatial regularization. IEEE Trans Image Process 27(12):6159–6173

    Article  MathSciNet  Google Scholar 

  50. Zhu L, Huang Z, Liu X, He X, Sun J, Zhou X (2017) Discrete multimodal hashing with canonical views for robust mobile landmark search. IEEE Trans Multimed 19(9):2066–2079

    Article  Google Scholar 

  51. Zhu L, Shen J, Xie L, Cheng Z (2017) Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans Knowl Data Eng 29 (2):472–486

    Article  Google Scholar 

  52. Zhu L, Huang Z, Li Z, Xie L, Shen HT (2019) Exploring auxiliary context: discrete semantic transfer hashing for scalable image retrieval. arXiv:1904.11207, 1–14

Download references

Acknowledgments

The work presented in this paper was supported by Beijing Natural Science Foundation of China (Grant No. L182033), Fund for Beijing University of Posts and Telecommunications (2019PTB-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Ming.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, Y., Zhang, Y. Efficient scalable spatiotemporal visual tracking based on recurrent neural networks. Multimed Tools Appl 79, 2239–2261 (2020). https://doi.org/10.1007/s11042-019-08331-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08331-4

Keywords

Navigation