Skip to main content
Log in

Development of pathological brain detection system using Jaya optimized improved extreme learning machine and orthogonal ripplet-II transform

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Pathological brain detection systems (PBDSs) have drawn much attention from researchers over the past two decades because of their significance in taking correct clinical decisions. In this paper, an efficient PBDS based on MR images is introduced that markedly improves the recent results. The proposed system makes use of contrast limited adaptive histogram equalization (CLAHE) and orthogonal discrete ripplet-II transform (O-DR2T) with degree 2 to enhance the quality of the input MR images and extract the features respectively. Subsequently, relevant features are obtained using PCA+LDA approach. Finally, a novel learning algorithm called IJaya-ELM is proposed that combines improved Jaya algorithm (IJaya) and extreme learning machine (ELM) for segregation of MR images as pathological or healthy. The improved Jaya algorithm is utilized to optimize the input weights and hidden biases of single-hidden-layer feedforward neural networks (SLFN), whereas one analytical method is used for determining the output weights. The proposed algorithm performs optimization according to both the root mean squared error (RMSE) and the norm of the output weights of SLFNs. Extensive experiments are carried out using three benchmark datasets and the results are compared against other competent schemes. The experimental results demonstrate that the proposed scheme brings potential improvements in terms of classification accuracy and number of features. Moreover, the proposed IJaya-ELM classifier achieves higher accuracy and obtains compact network architecture compared to conventional ELM and BPNN classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency?. Philos Trans R Soc Lond A Math Phys Eng Sci 357(1760):2495–2509

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès EJ, Donoho DL (2000) Curvelets- a surprisingly effective nonadaptive representation for objects with edges. Vanderbilt University Press, Nashville, pp 105–120

    Google Scholar 

  4. Candès EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun Pure Appl Math 57(2):219–266

    Article  MATH  Google Scholar 

  5. Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92

    Article  Google Scholar 

  6. Cormack A (1981) The radon transform on a family of curves in the plane. Proc Am Math Soc 83(2):325–330

    Article  MathSciNet  MATH  Google Scholar 

  7. Cormack A (1982) The radon transform on a family of curves in the plane. ii. Proc Am Math Soc 86(2):293–298

    Article  MathSciNet  MATH  Google Scholar 

  8. Das S, Chowdhury M, Kundu K (2013) Brain MR image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res 137:1–17

    Article  Google Scholar 

  9. Do MN, Vetterli M (2003) The finite ridgelet transform for image representation. IEEE Trans Image Process 12(1):16–28

    Article  MathSciNet  MATH  Google Scholar 

  10. El-Dahshan EA, Mohsen HM, Revett K, Salem ABM (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5545

    Article  Google Scholar 

  11. El-Dahshan ESA, Honsy T, Salem ABM (2010) Hybrid intelligent techniques for MRI brain images classification. Digital Signal Process 20(2):433–441

    Article  Google Scholar 

  12. Ghahremani M, Ghassemian H (2015) Remote sensing image fusion using ripplet transform and compressed sensing. IEEE Geosci Remote Sens Lett 12(3):502–506

    Article  Google Scholar 

  13. Hamza R, Muhammad K, Lv Z, Titouna F (2017) Secure video summarization framework for personalized wireless capsule endoscopy. Pervasive and Mobile Computing

  14. Han F, Yao HF, Ling QH (2013) An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116:87–93

    Article  Google Scholar 

  15. Holzinger A (2016) Interactive machine learning for health informatics: when do we need the human-in-the-loop?. Brain Infor 3(2):119–131

    Article  Google Scholar 

  16. Holzinger A, Plass M, Holzinger K, Criṡan GC, Pintea CM, Palade V (2016) Towards interactive machine learning (iml): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: International conference on availability, reliability, and security. Springer, pp 81–95

  17. Holzinger A, Plass M, Holzinger K, Crisan GC, Pintea CM, Palade V (2017) A glass-box interactive machine learning approach for solving np-hard problems with the human-in-the-loop. arXiv preprint. arXiv:http://arXiv.org/abs/1708.01104

  18. Holzinger K, Palade V, Rabadan R, Holzinger A (2014) Darwin or lamarck? Future challenges in evolutionary algorithms for knowledge discovery and data mining. In: Interactive knowledge discovery and data mining in biomedical informatics. Springer, pp 35–56

  19. Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122

    Article  Google Scholar 

  20. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE international joint conference on neural networks, vol 2. IEEE, pp 985–990

  21. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  22. Johnson KA, Becker JA (1999) The whole brain atlas. http://www.med.harvard.edu/AANLIB/

  23. Maitra M, Chatterjee A (2006) A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomed Signal Process Control 1 (4):299–306

    Article  Google Scholar 

  24. Martínez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  25. Nayak DR, Dash R, Majhi B (2015) Classification of brain MR images using discrete wavelet transform and random forests. In: Fifth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG). IEEE, pp 1–4

  26. Nayak DR, Dash R, Majhi B (2015) Least squares svm approach for abnormal brain detection in mri using multiresolution analysis. In: 2015 international conference on computing, communication and security (ICCCS). IEEE, pp 1–6

  27. Nayak DR, Dash R, Majhi B (2016) Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177:188–197

    Article  Google Scholar 

  28. Nayak DR, Dash R, Majhi B (2016) Pathological brain detection using curvelet features and least squares SVM. Multimed Tool Appl 75:1–24

  29. Nayak DR, Dash R, Majhi B (2017) Stationary wavelet transform and adaboost with SVM based pathological brain detection in MRI scanning. CNS Neurol Disord Drug Targets 16:137–149

  30. Nayak DR, Dash R, Majhi B, Mohammed J (2016) Non-linear cellular automata based edge detector for optical character images. Simulation 92:1–11

  31. Nayak DR, Dash R, Majhi B, Prasad V (2017) Automated pathological brain detection system: a fast discrete curvelet transform and probabilistic neural network based approach. Expert Systems with Applications

  32. Pizer SM, Johnston RE, Ericksen JP, Yankaskas BC, Muller KE (1990) Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the first conference on visualization in biomedical computing. IEEE, pp 337–345

  33. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    Google Scholar 

  34. Rao R, More K, Taler J, Ocłoń P (2016) Dimensional optimization of a micro-channel heat sink using jaya algorithm. Appl Therm Eng 103:572–582

    Article  Google Scholar 

  35. Sajjad M, Khan S, Jan Z, Muhammad K, Moon H, Kwak JT, Rho S, Baik SW, Mehmood I (2017) Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities. IEEE Access 5:3475–3489

    Article  Google Scholar 

  36. Saritha M, Joseph KP, Mathew AT (2013) Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recogn Lett 34(16):2151–2156

    Article  Google Scholar 

  37. Suresh S, Babu RV, Kim H (2009) No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput 9(2):541–552

    Article  Google Scholar 

  38. Wang S, Li P, Chen P, Phillips P, Liu G, Du S, Zhang Y (2017) Pathological brain detection via wavelet packet tsallis entropy and real-coded biogeography-based optimization. Fundamenta Informaticae 151(1-4):275–291

    Article  MathSciNet  Google Scholar 

  39. Wang S, Lu S, Dong Z, Yang J, Yang M, Zhang Y (2016) Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection. Appl Sci 6(6):169

    Article  Google Scholar 

  40. Wang S, Phillips P, Yang J, Sun P, Zhang Y (2016) Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Eng/Biomedizinische Technik 61:431–441

  41. Wang S, Rao RV, Chen P, Zhang Y, Liu A, Wei L (2017) Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm. Fundamenta Informaticae 151(1-4):191–211

    Article  MathSciNet  Google Scholar 

  42. Wang S, Zhang Y, Dong Z, Du S, Ji G, Yan J, Yang J, Wang Q, Feng C, Phillips P (2015) Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imaging Syst Technol 25(2):153–164

    Article  Google Scholar 

  43. Wang S, Zhang Y, Yang X, Sun P, Dong Z, Liu A, Yuan TF (2015) Pathological brain detection by a novel image feature—fractional Fourier entropy. Entropy 17(12):8278–8296

    Article  Google Scholar 

  44. Westbrook C (2014) Handbook of MRI technique. Wiley, Oxford

    Google Scholar 

  45. Xu J, Wu D (2012) Ripplet transform type II transform for feature extraction. IET Image Process 6(4):374–385

    Article  MathSciNet  Google Scholar 

  46. Xu J, Yang L, Wu D (2010) Ripplet: a new transform for image processing. J Vis Commun Image Represent 21(7):627–639

    Article  Google Scholar 

  47. Xu Y, Shu Y (2006) Evolutionary extreme learning machine based on particle swarm optimization. In: International symposium on neural networks. Springer, pp 644–652

  48. Yang G, Zhang Y, Yang J, Ji G, Dong Z, Wang S, Feng C, Wang Q (2015) Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed Tool Appl 75:1–17

  49. Yang J, Yang J (2003) Why can LDA be performed in PCA transformed space?. Pattern Recogn 36(2):563–566

    Article  Google Scholar 

  50. Zhang G, Wang Q, Feng C, Lee E, Ji G, Wang S, Zhang Y, Yan J (2015) Automated classification of brain MR images using wavelet-energy and support vector machines. In: 2015 international conference on mechatronics, electronic, industrial and control engineering (MEICx-15), pp 683–686

  51. Zhang Y, Dong Z, Liu A, Wang S, Ji G, Zhang Z, Yang J (2015) Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. J Med Imaging Health Inform 5(7):1395–1403

    Article  Google Scholar 

  52. Zhang Y, Dong Z, Wang S, Ji G, Yang J (2015) Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17(4):1795–1813

    Article  Google Scholar 

  53. Zhang Y, Dong Z, Wu L, Wang S (2011) A hybrid method for MRI brain image classification. Expert Syst with Appl 38(8):10,049–10,053

    Article  Google Scholar 

  54. Zhang Y, Ranjan Nayak D, Yang M, Yuan TF, Liu B, Lu H, Wang S (2017) Detection of unilateral hearing loss by stationary wavelet entropy. CNS Neurol Disord Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 16 (2):122–128

    Google Scholar 

  55. Zhang Y, Sun Y, Phillips P, Liu G, Zhou X, Wang S (2016) A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy. J Med Syst 40(7):1–11

    Article  Google Scholar 

  56. Zhang Y, Wang S, Dong Z, Phillip P, Ji G, Yang J (2015) Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Prog Electromagn Res 152:41–58

    Article  Google Scholar 

  57. Zhang Y, Wang S, Ji G, Dong Z (2013) An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci World J 2013:1–9

    Google Scholar 

  58. Zhang Y, Wang S, Sun P, Phillips P (2015) Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-Med Mater Eng 26(s1):S1283–S1290

    Article  Google Scholar 

  59. Zhang Y, Wang S, Wu L (2010) A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO. Prog Electromagn Res 109:325–343

    Article  Google Scholar 

  60. Zhang Y, Wu L (2012) An MR brain images classifier via principal component analysis and kernel support vector machine. Prog Electromagn Res 130:369–388

    Article  Google Scholar 

  61. Zhang Y, Wu L, Wang S (2011) Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog Electromagn Res 116:65–79

    Article  Google Scholar 

  62. Zhang Y, Chen S, Wang S, Yang JF, Phillips P (2015) Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int J Imaging Syst Technol 25(4):317–327

    Article  Google Scholar 

  63. Zhang Y, Chen XQ, Zhan TM, Jiao ZQ, Sun Y, Chen ZM, Yao Y, Fang LT, Lv YD, Wang S (2016) Fractal dimension estimation for developing pathological brain detection system based on minkowski-Bouligand method. IEEE Access 4:5937–5947

    Article  Google Scholar 

  64. Zhang Y, Wang S, Yang XJ, Dong ZC, Liu G, Phillips P, Yuan TF (2015) Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. SpringerPlus 4(1):1–16

    Article  Google Scholar 

  65. Zhang Y, Zhang Y, Lv YD, Hou XX, Liu FY, Jia WJ, Yang MM, Phillips P, Wang S (2017) Alcoholism detection by medical robots based on Hu moment invariants and predator–prey adaptive-inertia chaotic particle swarm optimization. Computers & Electrical Engineering

  66. Zhao G, Shen Z, Miao C, Man Z (2009) On improving the conditioning of extreme learning machine: a linear case. In: 7th international conference on information, communications and signal processing, ICICS. IEEE, pp 1–5

  67. Zhou X, Wang S, Xu W, Ji G, Phillips P, Sun P, Zhang Y (2015) Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier. In: Bioinformatics and biomedical engineering, pp 201–209

  68. Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recogn 38(10):1759–1763

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Ranjan Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, D.R., Dash, R. & Majhi, B. Development of pathological brain detection system using Jaya optimized improved extreme learning machine and orthogonal ripplet-II transform. Multimed Tools Appl 77, 22705–22733 (2018). https://doi.org/10.1007/s11042-017-5281-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5281-x

Keywords

Navigation