Skip to main content
Log in

Noise robust and rotation invariant entropy features for texture classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new formula is proposed that uses local entropy for texture feature extraction. This new method is similar to entropy; however, it calculates the local entropy of each local patch of textures. Entropy (ENT) is an attribute that measures the randomness of gray-level distribution of image. Entropy extracts dissimilarity of each local patch. In this paper, local entropy is compared to Local Binary Pattern (LBP) and local variance (VAR). All of these descriptors are rotation invariant and are used for extracting the features from each local neighborhood of textures. In spite of low accuracy of VAR and LBP the performance of ENT does not decrease significantly for noisy textures. In other words, ENT is more robust to noise than VAR and LBP. Implementations on Outex, UIUC, CUReT and MeasTex datasets show that entropy is more accurate than variance and LBP. Similar to VAR and LBP, ENT can be combined with other descriptors to improve the performance of classification. For almost all datasets that are used in implementation part, LBP/ENT is more accurate than LBP/VAR for normal and noisy textures. Also the ENT accuracy outperforms the accuracy of VAR and LBP and most of the advanced noise robust LBP versions for low Signal to Noise Ratio (SNR) values (SNR < 10). ENT feature is a continuous value so it is necessary to quantize to discrete value for histogram. The quantization and train step of ENT is the same as VAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikäinen M (2006) Face recognition with local binary patterns: application to face recognition. IEEE Trans PatternAnal Mach Intell 28(12):2037–2041

    Article  MATH  Google Scholar 

  2. Ahonen T, Pietikainen M (2007) In Proceedings of the Finnish Signal Processing Symposium, FINSIG 2007. Soft histograms for local binary patterns (Oulu, Finland, 2007). 1:1–4

  3. Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: Fast Retina Keypoint. IEEE Conf Comput Vis Pattern Recogn

  4. Anys H, He DC (1995) Evaluation of textural and multi polarization radar features for crop classification. IEEE Trans Geosci Remote Sens 33(5):1170–1181

    Article  Google Scholar 

  5. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. Comput Vis ECCV 404–417

  6. Chen JL, Kundu A (1994) Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model. IEEE Trans Pattern Anal Mach Intell 16(2):208–214

    Article  Google Scholar 

  7. Cohen FS, Fan Z, Attali S (1991) Automated inspection of textile fabrics using Textural models. IEEE Trans Pattern Anal Mach Intell 13(8):803–808

    Article  Google Scholar 

  8. Dana KJ, van Ginneken B, Nayar SK, Koenderink JJ (1999) Reflectance and texture of real world surfaces. ACM Trans Graph 18(1):1–34

    Article  Google Scholar 

  9. Deng H, Clausi DA (2004) Gaussian VZ-MRF rotation-invariant features for image classification. IEEE Trans Pattern Anal Mach Intell 26(7):951–955

    Article  Google Scholar 

  10. Désira C, Petitjeana C, Heuttea L, Thibervillea L, Salaüna M (2012) An SVM-based distal lung image classification using texture descriptors. Comput Med Imaging Graph 36:264–270

    Article  Google Scholar 

  11. Fathi A, Naghsh-Nilchi A (2012) Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recogn Lett

  12. Galloway M (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–199

    Article  Google Scholar 

  13. Garding J, Lindeberg T (1996) Direct computation of shape cues using scale-adapted spatial derivative operators. IJCV 17(2):163–191

    Article  Google Scholar 

  14. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 9(16):1657–1663

    MathSciNet  Google Scholar 

  15. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP Variance (LBPV) with global matching. Pattern Recogn J 43:706–719

    Article  MATH  Google Scholar 

  16. Haralick RM, Shanmugam K, Its’HakDinstein (1979) Textural features for image classification. IEEE Trans Syst Man Cybern

  17. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436

    Article  MATH  Google Scholar 

  18. Huang X, Li SZ, Wang Y (2004) Shape localization based on statistical method using extended local binary patterns. Proc Int Conf Image Graph 184–187

  19. Huang Y, Wang Y, Tan T (2006) Combining statistics of geometrical and correlative features for 3d face recognition. In Proceedings of the British Machine Vision Conference. BMVA Press, pp 90.1–90.10

  20. Huang D, Wang Y, Wang Y (2007) A robust method for near infrared face recognition based on extended local binary pattern. Proc Int Symp Vis Comput 437–446

  21. Ji Q, Engel J, Craine E (2000) Texture analysis for classification of cervix lesions. IEEE Trans Med Imaging 19(11):1144–1149

    Article  Google Scholar 

  22. Kashyap RL, Khotanzed A (1986) A model-based method for rotation invariant texture classification. IEEE Trans Pattern Anal Mach Intell 8(4):472–481

    Article  Google Scholar 

  23. Kylberg, Sintorn (2013) Evaluation of noise robustness for local binary pattern descriptors in texture classification. EURASIP J Image Video Proc 17

  24. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  25. Leutenegger, Chli, Siegwart (2011) BRISK: Binary Robust Invariant Scalable Keypoints. ICCV

  26. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  Google Scholar 

  27. Lowe DG (2004) Distinctive image features from scale-invariant key points. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  28. Mikolajczyk K, Schmid C (2002) Affiane invariant interest point detector. Proc ECCV 1:128–142

    MATH  Google Scholar 

  29. Mir AH, Hanmandlu M, Tandon SN (1995) Texture analysis of CT images. IEEE Eng Med Biol Mag 14

  30. Murala S, Maheshwari RP, Bala subramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  31. Ojala T (1997) Nonparametric texture analysis using simple spatial operators, with applications in visual inspection. Acta Univ Ouluensis C 105

  32. Ojala T, Mäenpää T, Pietikäinen M, Viertola J, Kyllönen J, Huovinen S (2002) Outex – new framework for empirical evaluation of textureanalysis algorithm. Proc Int Conf Pattern Recogn 701–706

  33. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  34. Ojala T, Pietikainen M, Maenpaa TT (2002) Multi resolution gray-scale and rotation Invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  35. Pietikäinen M, Ojala T, Xu Z (2000) Rotation-invariant texture classification using feature distributions. Pattern Recogn 33(1):43–52

    Article  Google Scholar 

  36. Ren J, Jiang X, Yuan J (2013) Noise resistant local binary pattern with an embedded error correction mechanism. IEEE Trans Image Process 22(10):4049–4060

    Article  MathSciNet  Google Scholar 

  37. Smith G (1998) MeasTex image texture database and test suite centre for sensor signal and information processing. Univ Qld

  38. Tajeripour F, Kabir E, Sheikhi A (2008) Fabric defect detection using modified local binary patterns. EURASIP J Adv Signal Process 8:1–12

    MATH  Google Scholar 

  39. Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. Proc Int Work Anal Model Faces Gestures 168–182

  40. Varma M, Garg R (2007) Locally invariant fractal features for statistical texture classification. Proc Int Conf Comput Vis 1–8

  41. Varma M, Zisserman A (2003) Texture classification: are filter banks necessary? Proc Int Conf Comput Vis Pattern Recogn 691–698

  42. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1–2):61–81

    Article  Google Scholar 

  43. Varma M, Zisserrman A (2009) A statistical approach to material classification using image patch examplars. IEEE Trans Pattern Anal Mach Intell 31(11):2032–2047

    Article  Google Scholar 

  44. Xu Y, Ji H, Fermuller C (2005) A projective invariant for texture. Proc Int Conf Comput Vis Pattern Recogn 1932–1939

  45. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative patterns versus local binary patterns: face recognition with high-order local patterns descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  Google Scholar 

  46. Zhang J, Marszalek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification of texture and object categories: a comprehensive study. Int J Comput Vis 73(2):213–238

    Article  Google Scholar 

  47. Zhao Y, Jia W, Hu RX, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:6876

    Google Scholar 

  48. Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 27(6):915–928

    Article  Google Scholar 

  49. Zhun C, Bichot C, Chen L (2013) Image region description using orthogonal combination of local binary patterns enhanced with color information. Pattern Recogn 46:1949–1963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Shakoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakoor, M.H., Tajeripour, F. Noise robust and rotation invariant entropy features for texture classification. Multimed Tools Appl 76, 8031–8066 (2017). https://doi.org/10.1007/s11042-016-3455-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3455-6

Keywords

Navigation