Skip to main content
Log in

Blind single image super resolution with low computational complexity

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a single image super resolution algorithm with the aim of satisfying three desirable characteristics, namely, high quality of the produced images, adaptability to image contents and unknown blurring conditions used to generate given input images, and low computational complexity. After the given input image is up-scaled using a conventional reconstruction operator, the missing high frequency components estimated from lower resolution versions of the input image are added for improved quality and, moreover, the amount of the high frequency components to be added is adaptively determined. No computationally intensive operation is involved in the whole process, which makes the method computationally cheap. Experimental results show that the proposed method yields good subjective and objective image quality consistently across different blurring conditions and contents, and operates fast in comparison to existing state-of-the-art algorithms. In addition, it is also demonstrated that the proposed method can be used in combination with the existing algorithms in order to improve further their performance in terms of image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allebach J, Wong PW (1996) Edge-directed interpolation. Proc Int Conf Image Proc 3:707–710. doi:10.1109/ICIP.1996.560768

    Article  Google Scholar 

  2. Asuni N, Giachetti A (2008) Accuracy improvements and artifacts removal in edge based image interpolation. Proc Int Conf Comput Vis Theory Appl 1:58–65

    Google Scholar 

  3. Chang J, Yoo DS, Park JH, Park SH, Kang MG (2011) Edge directional interpolation for image upscaling with temporarily interpolated pixels. Electron Lett 47(21):1176–1178. doi:10.1049/el.2011.2496

    Article  Google Scholar 

  4. Dong W, Zhang L, Lukac R, Shi G (2013) Sparse representation based image interpolation with nonlocal autoregressive modeling. IEEE Trans Image Process 22(4):1382–1394. doi:10.1109/TIP.2012.2231086

    Article  MathSciNet  Google Scholar 

  5. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630. doi:10.1109/TIP.2012.2235847

    Article  MathSciNet  Google Scholar 

  6. Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857. doi:10.1109/TIP.2011.2108306

    Article  MathSciNet  Google Scholar 

  7. Giachetti A, Asuni N (2011) Real-time artifact-free image upscaling. IEEE Trans Image Process 20(10):2760–2768. doi:10.1109/TIP.2011.2136352

    Article  MathSciNet  Google Scholar 

  8. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Prentice Hall, New Jersey

    Google Scholar 

  9. Hou HS, Andrews HC (1978) Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust 26(6):508–517. doi:10.1109/TASSP.1978.1163154

    Article  MATH  Google Scholar 

  10. Keys RG (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Acoust 29(6):1153–1160. doi:10.1109/TASSP.1981.1163711

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim W-H, Lee J-S (2015) Framework for fair objective performance evaluation of single-image super-resolution algorithms. Electron Lett 51(1):42–44. doi:10.1049/el.2014.2784

    Article  Google Scholar 

  12. Lee J-H, Kim J-O, Han J-W, Choi K-S, Ko S-J (2010) Edge-oriented two-step interpolation based on training set. IEEE Trans Consum Electron 65(3):1848–1855. doi:10.1109/TCE.2010.5606336

    Article  Google Scholar 

  13. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10(10):1521–1527. doi:10.1109/83.951537

    Article  Google Scholar 

  14. Mallat S, Yu G (2010) Super-resolution with sparse mixing estimators. IEEE Trans Image Process 19(11):2889–2900. doi:10.1109/TIP.2010.2049927

    Article  MathSciNet  Google Scholar 

  15. Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36. doi:10.1109/MSP.2003.1203207

    Article  Google Scholar 

  16. Pratt WK (1978) Digital image processing. Wiley, New York

    MATH  Google Scholar 

  17. Tam W-S, Kok C-W, Siu W-C (2010) Modified edge-directed interpolation for images. J Electron Imaging 19(1):013011. doi:10.1117/1.3358372

    Article  Google Scholar 

  18. Tian J, Ma K-K (2011) A survey on super-resolution imaging. SIViP 5(3):329–342. doi:10.1007/s11760-010-0204-6

    Article  Google Scholar 

  19. Unser M, Aldroubi A, Eden M (1991) Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans Pattern Anal Mach Intell 13(3):277–285. doi:10.1109/34.75515

    Article  Google Scholar 

  20. Van Ouwerkerk JD (2006) Image super-resolution survey. Image Vis Comput 24(10):1039–1052. doi:10.1016/j.imavis.2006.02.026

    Article  Google Scholar 

  21. Vedadi F, Shirani S (2014) A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions. IEEE Trans Image Process 23(1):424–438. doi:10.1109/TIP.2013.2290586

    Article  MathSciNet  Google Scholar 

  22. Vrcej B, Vaidyanathan PP (2001) Efficient implementation of all-digital interpolation. IEEE Trans Image Process 10(11):1639–1646. doi:10.1109/83.967392

    Article  MATH  Google Scholar 

  23. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  24. Wei Z, Ma K-K (2013) Contrast-guided image interpolation. IEEE Trans Image Process 22(11):4271–4285. doi:10.1109/TIP.2013.2271849

    Article  MathSciNet  Google Scholar 

  25. Wong C-S, Siu W-C (2010) Further improved edge-directed interpolation and fast EDI for SDTV to HDTV conversion. Proc Eur Signal Proc Conf 2010:309–313

    Google Scholar 

  26. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873. doi:10.1109/TIP.2010.2050625

    Article  MathSciNet  Google Scholar 

  27. Zhang X, Ma S, Zhang Y, Zhang L, Gao W (2009) Nonlocal edge-directed interpolation. Proc IEEE Pac Rim Conf Multimedia 2009:1197–1207. doi:10.1007/978-3-642-10467-1_121

    Google Scholar 

  28. Zhang X, Wu X (2008) Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans Image Process 17(6):887–896. doi:10.1109/TIP.2008.924279

    Article  MathSciNet  Google Scholar 

  29. Zhang L, Xiaolin W (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238. doi:10.1109/TIP.2006.877407

    Article  Google Scholar 

  30. Zhou D, Shen X, Dong W (2012) Image zooming using directional cubic convolution interpolation. IET Image Process 6(6):627–634. doi:10.1049/iet-ipr.2011.0534

    Article  MathSciNet  Google Scholar 

  31. Zhou F, Yang W, Liao Q (2012) Single image super-resolution using incoherent sub-dictionaries learning. IEEE Trans Consum Electron 58(3):891–897. doi:10.1109/TCE.2012.6311333

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the “IT Consilience Creative Program” (IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, WH., Lee, JS. Blind single image super resolution with low computational complexity. Multimed Tools Appl 76, 7235–7249 (2017). https://doi.org/10.1007/s11042-016-3396-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3396-0

Keywords

Navigation