Skip to main content
Log in

Super-resolution via adaptive combination of color channels

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Super-resolution (SR) is a technology to reconstruct a clear high-resolution image with plausible details according to one or a group of observed low- resolution images. However, many existing methods require the help of “tools”, which results in high time and memory costs for training and storing these “tools”. This paper proposes an SR method that can be executed without these training “tools”. This method comprises two stages: color channel adaptive combination and regularization. In the first stage, color channel adaptive combination assembles the textures captured by different color channels into the luminance component. This strategy is helpful in effectively utilizing the luminance information of different light bands. In the second stage, an improved total variation (TV) regularization method is proposed to suppress artifacts and sharpen edges. The TV regularization adds a new item in the iteration formula to enable the edges to be similar to the desired high-resolution image. Next, iterative back projection is used to fit the high-resolution image to the observed low-resolution image. The experimental results demonstrate that the proposed algorithm is superior to many existing learning-based methods and has low time cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Bernstein R (1976) Digital image processing of earth observation sensor data. IBM J Res Dev 20(1):40–57

    Article  MATH  Google Scholar 

  2. Chang H, Yeung DY, Xiong Y (2004) Super-resolution through neighbor embedding. In: IEEE International conference on computer vision and pattern recognition, vol 1. IEEE, Washington, pp 275–282

  3. Chen X, Qi C (2014) Low-rank neighbor embedding for single image super-resolution. IEEE Signal Process Lett 21(1):79–82

  4. Chen X, Qi C (2014) Nonlinear neighbor embedding for single image super-resolution via kernel mapping. Signal Process 94(1):6–22

    Article  Google Scholar 

  5. Dong W, Shi G, Li X, Zhang L, Wu X (2012) Image reconstruction with locally adaptive sparsity and nonlocal robust regularization. Signal Process Image Commun 27(10):1109–1122

    Article  Google Scholar 

  6. Dong W, Zhang L, Lukac R, Shi G (2013) Sparse representation based image interpolation with nonlocal autoregressive modeling. IEEE Trans Image Process 22(4):1382–1394

    Article  MathSciNet  Google Scholar 

  7. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  Google Scholar 

  8. Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857

    Article  MathSciNet  Google Scholar 

  9. Fattal R (2007) Image upsampling via imposed edge statistics. ACM Trans Graphics 26(3):1–8

    Article  Google Scholar 

  10. Feichtenhofer C, Fassold H, Schallauer P (2013) A perceptual image sharpness metric based on local edge gradient analysis. IEEE Signal Process Lett 20(4):379–382

    Article  Google Scholar 

  11. Gao X, Zhang K, Tao D, Li X (2012) Image super-resolution with sparse neighbor embedding. IEEE Trans Image Process 21(7):3194–3205

    Article  MathSciNet  Google Scholar 

  12. Glasner D, Bagon S, Irani M (2009) Super-resolution from a single image. In: IEEE Computer society conference on computer vision and pattern recognition. IEEE, Kyoto, pp 349–356

  13. Gunturk BK, Altunbasak Y, Mersereau RM (2002) Multiframe resolution-enhancement methods for compressed video. IEEE Signal Process Lett 9 (6):170–174

    Article  Google Scholar 

  14. Hou H, Andrews H (1978) Cubic splines for image interpolation and digital filtering. IEEE Transactions on Acoustics. Speech Signal Process 26(6):508–517

    Article  MATH  Google Scholar 

  15. Irani M, Peleg S (1991) Improving resolution by image registration. CVGIP: Graph Models Image Process 53(3):231–239

    Google Scholar 

  16. Jing G, Shi Y, Kong D, Ding W, Yin B (2014) Image super-resolution based on multi-space sparse representation. Multimed Tools Appl 70(2):741–755

    Article  Google Scholar 

  17. Keys R (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Acoustics Speech Signal Process 29(6):1153–1160

    Article  MathSciNet  MATH  Google Scholar 

  18. Li M, Nguyen TQ (2008) Markov random field model-based edge-directed image interpolation. IEEE Trans Image Process 17(7):1121–1128

    Article  MathSciNet  Google Scholar 

  19. Lysaker M, Osher S, Tai XC (2004) Noise removal using smoothed normals and surface fitting. IEEE Trans Image Process 13(10):1345–1357

    Article  MathSciNet  MATH  Google Scholar 

  20. Marquina A, Osher SJ (2008) Image super-resolution by tv-regularization and bregman iteration. J Sci Comput 37(3):367–382

    Article  MathSciNet  MATH  Google Scholar 

  21. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International conference on computer vision, vol 2. IEEE, Vancouver, pp 416–423

  22. Melin P, Gonzalez C, Castro JR, Mendoza O, Castillo O (2014) Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans Fuzzy Syst 22(6):1515–1525

    Article  Google Scholar 

  23. Nasrollahi K, Moeslund TB (2014) Super-resolution: a comprehensive survey. Mach Vision Appl 25(6):1423–1468

    Article  Google Scholar 

  24. Newton I. (1952) Opticks, or, a treatise of the reflections, refractions, inflections and colours of light. Courier Corporation, Cambridge

    Google Scholar 

  25. Purkait P, Pal NR, Chanda B (2014) A fuzzy-rule-based approach for single frame super resolution. IEEE Trans Image Process 23(5):2277–2290

    Article  MathSciNet  Google Scholar 

  26. Sajjad M, Ejaz N, Mehmood I, Baik S (2013) Digital image super-resolution using adaptive interpolation based on gaussian function. Multimed Tools Appl 9(7):1–17

    Google Scholar 

  27. Song H, Huang B, Liu Q, Zhang K (2015) Improving the spatial resolution of landsat tm/etm+ through fusion with spot5 images via learning-based super-resolution. IEEE Trans Geosci Remote Sensing 53(3):1195–1204

    Article  Google Scholar 

  28. Sun J, Xu Z, Shum HY (2011) Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans Image Process 20(6):1529–1542

    Article  MathSciNet  Google Scholar 

  29. Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: IEEE International conference on computer vision. IEEE, Portland, pp 1920–1927

    Google Scholar 

  30. Trinh DH, Luong M, Dibos F, Rocchisani J, Pham C, Nguyen TQ (2014) Novel example-based method for super-resolution and denoising of medical images. IEEE Trans Image Process 23(4):1882–1895

    Article  MathSciNet  Google Scholar 

  31. Vedadi F, Shirani S (2014) A map-based image interpolation method via viterbi decoding of markov chains of interpolation functions. IEEE Trans Image Process 23 (1):424–438

    Article  MathSciNet  Google Scholar 

  32. Wang J, Zhu S, Gong Y (2010) Resolution enhancement based on learning the sparse association of image patches. Pattern Recog Lett 31(1):1–10

    Article  Google Scholar 

  33. Wang L, Xiang S, Meng G, Wu H y, Pan C (2013) Edge-directed single image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Trans Circ Syst Video Technol 23(8):1289– 1299

    Article  Google Scholar 

  34. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612

    Article  Google Scholar 

  35. Xiao Z, Hua H (2012) Super-resolution method for multiview face recognition from a single image per person using nonlinear mappings on coherent features. IEEE Signal Process Lett 19(4):195–198

    Article  Google Scholar 

  36. Yang J, Wang Z, Lin Z, Cohen S, Huang T (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process 21(8):3467–3478

    Article  MathSciNet  Google Scholar 

  37. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  38. Yang S, Wang M, Chen Y, Sun Y (2012) Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding. IEEE Trans Image Process 21(9):4016–4028

    Article  MathSciNet  Google Scholar 

  39. Zeyde R, Protter M, Elad M (2010) On single image scale-up using sparse-representation. Lect Notes Comput Sci 6920(1):711–730

    MathSciNet  MATH  Google Scholar 

  40. Zhang K, Gao X, Tao D, Li X (2012) Single image super-resolution with non-local means and steering kernel regression. IEEE Trans Image Process 21 (11):4544–4556

    Article  MathSciNet  Google Scholar 

  41. Zhang K, Gao X, Tao D, Li X (2013) Single image super-resolution with multiscale similarity learning. IEEE Trans Neural Netw Learn Syst 24(10):1648–1659

    Article  Google Scholar 

  42. Zhou L, Lu X, Yang L (2014) A local structure adaptive super-resolution reconstruction method based on btv regularization. Multimed Tools Appl 71 (3):1879–1892

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant no. 61340040, 61202183, 61102095, 61201194) and the Science and Technology Plan in Shannxi Province of China (No.2016KJXX-47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Chang, Z., Fan, J. et al. Super-resolution via adaptive combination of color channels. Multimed Tools Appl 76, 1553–1584 (2017). https://doi.org/10.1007/s11042-015-3124-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3124-1

Keywords

Navigation