Skip to main content

Advertisement

Log in

Sequential Markov random fields for human body parts tracking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel human body part tracker called sequential Markov random fields (SMRFs), which can be used to extract spatiotemporal features in human action recognition. Given a video sequence of human action in the monocular settings, SMRF can effectively detect the key spatiotemporal feature points on human body parts. We also develop efficient learning algorithms for the SMRF tracker using relaxation labeling (RL). Our results show that the SMRF tracker performs better than some state-of-the-art trackers for human action recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We denote \(p\left(y_i^t,y_{i^{\prime}}^t\big|f_i^t=L_j^t,f_{i^{\prime}}^t=L_{j'}^t\right)\) as \(p\left (y_i^t,y_{i^{\prime }}^t\big |L_j^t,L_{j^{\prime }}^t\right )\)when we consider the structure of a pose.

  2. We denote \(p\left (y_i^t|f_i^t=\hat {x}_j^t\right )p\left (y_i^t, y_i^{t-1}| f_i^t=x_j^t,f_i^{t-1}=x_j^{t-1}\right )\)as \(p\left (y_i^t|\hat {x}_j^t\right )p\left (y_i^t, y_i^{t-1}| x_j^t,x_j^{t-1}\right )\)when we consider the dynamic motion.

References

  1. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans Sig Process 50(2):174–188

    Article  Google Scholar 

  2. Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147

    Article  Google Scholar 

  3. Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In: ICCV, pp 1395–1402

  4. Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatiotemporal features. Vis Surveill Perform Eval Tracking Surveill 2:65–72

    Article  Google Scholar 

  5. Gu B, Hong L (2001) Tracking 2d rigid targets with invariant constraints. Inf Sci 138:79–97

    Article  MATH  Google Scholar 

  6. Hammersley JM, Clifford P Markov fields on finite graphs and lattices. unpublished

  7. Hue C, Cadre J-PL, Perez P (2002) Sequential monte carlo methods for multiple target tracking and data fusion. IEEE Trans Sig Process 50(2):309–325

    Article  Google Scholar 

  8. Isard M, Blake A (1998) Condensation-conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28

    Article  Google Scholar 

  9. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211

    Article  Google Scholar 

  10. Kato J, Watanabe T, Joga S, Liu Y, Hase H (2004) An HMM/MRF-based stochastic framework for robust vehicle tracking. IEEE Trans Intell Transp Syst 5(3):142–154

    Article  Google Scholar 

  11. Khan Z, Balch T, Dellaert F (2005) Mcmc-based particle filtering for tracking a variable number of interacting targets. IEEE Trans Pattern Anal Mach Intell 27(11):1805–1819

    Article  Google Scholar 

  12. Laptev I, Marszałek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In: CVPR

  13. Le QV, Zou WY, Yeung SY, Ng AY (2011) Learning hierarchical spatiotemporal features for action recognition with independent subspace analysis. In: CVPR, pp 3361–3368

  14. Lee MW, Nevatia R (2009) Human pose tracking in monocular sequence using multilevel structured models. IEEE Trans Pattern Anal Mach Intell 31(1):27–38

    Article  Google Scholar 

  15. Li SZ (2001) Markov random field modeling in image analysis. Springer, Tokyo

    Book  MATH  Google Scholar 

  16. Magnenat-Thalmann N, Thalmann D (1991) Complex models for animating synthetic actors. IEEE Comput Graph Appl 11(5):32–44

    Article  Google Scholar 

  17. Marszalek M, Laptev I, Schmid C (2009) Actions in context. In: CVPR

  18. Okuma K, Taleghani A, de Freitas N (2004) A boosted particle filter: multitarget detection and tracking. In: European Conference on Computer Vision (ECCV), pp 28–39

  19. Rodriguez MD, Ahmed J, Shah M (2008) Action MACH a spatiotemporal maximum average correlation height filter for action recognition. In: CVPR

  20. Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: ICPR, vol 3, pp 32–36

  21. Song Y, Goncalves L, Perona P (2003) Unsupervised learning of human motion. IEEE Trans Pattern Anal Mach Intell 25(7):1–14

    Google Scholar 

  22. Tomasi C, Kanade T (1991) Detection and tracking of point featues. Technical Report CMU-CS-91-132, Carnegie Mellon Univ.

  23. Wang H, Ullah MM, Klaser A, Laptev I, Schmid C (2009) Evaluation of local spatiotemporal features for action recognition. In: BMVC, pp 3361–3368

  24. Wang Y, Mori G (2009) Human action recognition by semilatent topic models. IEEE Trans Pattern Anal Mach Intell 31(10):1762–1774

    Article  Google Scholar 

  25. Wu Y, Hua G, Yu T (2003) Tracking articulated body by dynamic markov network. In: IEEE Internatioal conference on computer vision (ICCV), pp 1094–1101

  26. Wu Y., Yu T (2006) A field model for human detection and tracking. IEEE Trans Pattern Anal Mach Intell 28(5):753–765

    Article  Google Scholar 

  27. Yang C, Duraiswami R, Davis L (2005) Fast multiple object tracking via a hierarchical particle filter. In: IEEE Internatioal conference on computer Vision (ICCV), pp 212–219

  28. Yu Q, Medioni G (2009) Multiple target tracking by spatio-temporal Monte Carlo Markov Chain data association. IEEE Trans Pattern Anal Mach Intell 31(12):2196–2210

    Article  Google Scholar 

  29. Yuan J, Liu Z, Wu Y (2011) Discriminative video pattern search for efficient action detection. IEEE Trans Pattern Anal Mach Intell 33(9):1728–1743

    Article  Google Scholar 

  30. Zeng J (2012) A topic modeling toolbox using belief propagation. J Mach Learn Res 13:2233–2236

    MATH  MathSciNet  Google Scholar 

  31. Zeng J, Cheung WK, Li C-H, Liu J (2009) Multirelational topic models. In: ICDM

  32. Zeng J, Cheung WK, Liu J (2013) Learning topic models by belief propagation. IEEE Trans Pattern Anal Mach Intell 35(5):1121–1134

    Article  Google Scholar 

  33. Zeng J, Feng W, Xie L, Liu Z-Q (2010) Cascade markov random fields for stroke extraction of chinese characters. Inf Sci 180:301–311

    Article  Google Scholar 

  34. Zeng J, Liu Z-Q (2008) Markov random field-based statistical character structure modeling for handwritten Chinese character recognition. IEEE Trans Pattern Anal Mach Intell 30(5):767–780

    Article  Google Scholar 

  35. Zeng J, Liu ZQ (2008) Type-2 fuzzy Markov random fields and their application to handwritten Chinese character recognition. IEEE Trans Fuzzy Syst 16(3):747–760

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by a GRF grant from RGC UGC Hong Kong (GRF Project No.9041574) and a grant from City University of Hong Kong (Project No. 7008026). It is partly supported by by NSFC (Grant No. 61003154, 61373092 and 61033013), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 12KJA520004) and Innovative Research Teamin Soochow University (Grant No. SDT2012B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, XQ., Liu, ZQ. Sequential Markov random fields for human body parts tracking. Multimed Tools Appl 74, 6671–6690 (2015). https://doi.org/10.1007/s11042-014-1924-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-1924-3

Keywords

Navigation