Skip to main content

Advertisement

Log in

Additive Technologies as Breakthrough Solutions for Creating Advanced Functional Materials

  • Published:
Metal Science and Heat Treatment Aims and scope

The main directions of the development of additive technologies at the Peter the Great St. Petersburg Polytechnic University are considered. Fabrication and research of spherical powders of complexly alloyed alloys for additive production from metal waste and of functionally graded materials with variable structure, chemical composition and porosity, synthesis of intermetallic titanium alloys by selective laser melting are considered among other examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Hereinafter, the content of elements is given in atomic fractions, expressed in %.

References

  1. E. C. Santos, M. Shiomi, K. Osakada, and T. Laoui, “Rapid manufacturing of metal components by laser forming,” Int. J. Mach. Tool Manuf., 46(12 – 13), 1459 – 1468 (2006).

  2. V. Maksarov and V. Krasnyy, “The formation of surface roughness of piston rings for the purpose of improving the adhesion of wear-resistant coatings,” Key Eng. Mat., 736, 73 – 78 (2017).

    Article  Google Scholar 

  3. J. Olt, O. Liivapuu, V. Maksarov, A. Liyvapuu, and T. Tärgla, “Mathematical modelling of cutting process system,” in: Engineering Mathematics I. Springer Proceedings in Mathematics and Statistics, 178, Springer, Cham (2016).

  4. W. E. Frazier, “Metal additive manufacturing: Areview,” J. Mater. Eng. Perform., 23(6), 1917 – 1928 (2014).

    Article  CAS  Google Scholar 

  5. T. Wohlers, Wohlers Report 2014: Additive Manufacturing and 3D Printing. State of the Industry. Annual Worldwide Progress Report, Wohlers Associates Inc., Fort Collins (2014).

  6. A. Uriondo, M. Esperon-Miguez, and S. Perinpanayagam, “The present and future of additive manufacturing in the aerospace sector: A review of important aspects,” Proc. Inst. Mech. Eng., Part G, J. Aer. Eng., 229(11), 2132 – 2147 (2015).

    Article  CAS  Google Scholar 

  7. S. L. Sing, J. An,W. Y. Yeong, and F. E.Wiria, “Laser and electron- beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs,” J. Orthop. Res., 34(3), 369 – 385 (2016).

    Article  CAS  Google Scholar 

  8. D. Mahmoud and M. Elbestawi, “Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: Areview,” J. Manuf. Mater. Proc., 1(2), 1 – 19 (2017).

    Google Scholar 

  9. V. A. Popovich, E. V. Borisov, V. S. Sufiyarov, and A. A. Popovich, “Tailoring the properties in functionally graded alloy Inconel 718 using additive technologies,” Met. Sci. Heat Treat., 60(11 – 12), 701 – 709 (2019).

  10. D. V. Masaylo, A. A. Popovich, V. S. Sufiyarov, A. V. Orlov, and A. I. Shamshurin, “A study of structural features of a gradient material from a heat-resistant nickel alloy produced by laser cladding,” Met. Sci. Heat Treat., 60(11 – 12), 739 – 744 (2019).

  11. S. Singh, S. Ramakrishna, and R. Singh, “Material issues in additive manufacturing: A review,” J. Manuf. Process., 25, 185 – 200 (2017).

    Article  Google Scholar 

  12. S. Samal, “Thermal plasma technology: The prospective future in material processing,” J. Clean. Prod., 142, 3131 – 3150 (2017).

    Article  CAS  Google Scholar 

  13. N. G. Razumov, A. A. Popovich, and Q. S. Wang, “Thermal plasma spheroidization of high-nitrogen stainless steel powder alloys synthesized by mechanical alloying,” Met. Mater. Int., 24(2), 363 – 370 (2018).

    Article  CAS  Google Scholar 

  14. I. Polozov, V. Sufiiarov, A. Kantyukov, and A. Popovich, “Selective laser melting of Ti2 AlNb-based intermetallic alloy using elemental powders: Effect of process parameters and post-treatment on microstructure, composition, and properties,” Intermetallics, 112, 106554 (2019).

    Article  CAS  Google Scholar 

  15. I. Polozov, N. Razumov, T. Makhmutov, A. Silin, A. Kim, and A. Popovich, “Synthesis of titanium orthorhombic alloy spherical powders by mechanical alloying and plasma spheroidization processes,” Mater. Lett., 256, 126615 (2019).

    Article  CAS  Google Scholar 

  16. T. Borkar, B. Gwalani, D. Choudhuri, et al., “A combinatorial assessment of Alx CrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties,” Acta Mater., 116, 63 – 76 (2016).

    Article  CAS  Google Scholar 

  17. O. V. Panchenko, L. A. Zhabrev, D. V. Kurushkin, and A. A. Popovich, “Macrostructure and mechanical properties of Al – Si, Al – Mg – Si, and Al – Mg – Mn aluminum alloys produced by electric arc additive growth,” Met. Sci. Heat Treat., 60(11 – 12), 749 – 754 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Popovich.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 19 – 25, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovich, A.A. Additive Technologies as Breakthrough Solutions for Creating Advanced Functional Materials. Met Sci Heat Treat 62, 18–24 (2020). https://doi.org/10.1007/s11041-020-00507-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00507-2

Key words

Navigation