Skip to main content
Log in

Effect of Neodymium and Zirconium on the Structure of Castable Magnesium Alloy ML10 (NZ30K)

  • Published:
Metal Science and Heat Treatment Aims and scope

Alloys of the Mg – Zn – Zr – Nd system with composition matching that of ML10 (NZ30K) and different contents of the main alloying components within the standardized range are studied. Four-component Mg – Zn –Zr – Nd phase diagrams are simulated, and the stages of crystallization of the alloys are considered. The structure of the alloys is determined in cast condition and after a T6 heat treatment. Fracture surfaces are analyzed. The distribution of the alloying elements in the structure is studied. The changes in the content of zirconium within the standardized range are shown to affect the grain size in the cast and heat treated states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Here and below in the paper the content of elements is given in mass percent.

References

  1. Z. Xingwei, D. Jie, L. Wencai, et al., “Microstructure and mechanical properties of NZ30K alloy by semicontinuous direct chill and sand mould casting processes,” China Foundry, 8(1), 41 – 46 (2011).

  2. M. B. Al’tman, A. P. Antipova, V. A. Blokhina, et al., Magnesium Alloys. A Manual. Pt. 1. The Metal Science of Magnesium and its Alloys. Fields of Application [in Russian], Metallurgiya, Moscow (1978), 232 p.

  3. F. Penghuai, P. Liming, J. Haiyan, et al., “Chemical composition optimization of gravity cast Mg – yNd – xZn – Zr alloy,” Mater. Sci. Eng. A, 496, 177 – 188 (2008).

    Article  Google Scholar 

  4. D. S. Gandel, M. A. Easton, M. A. Gibson, et al., “CALPHAD simulation of the Mg – (Mn, Zr) – Fe system and experimental comparison with as-cast alloy microstructures as relevant to impurity driven corrosion of Mg-alloys,” Mater. Chem. Phys., 143, 1082 – 1091 (2014).

    Article  Google Scholar 

  5. J.-W. Chang, P.-H. Fu, X.-W. Guo, et al., “The effects of heat treatment and zirconium on the corrosion behavior of Mg –3Nd – 0.2Zn – 0.4Zr (wt.%) alloy,” Corrosion Sci., 49, 2612 – 2627 (2007).

  6. A. V. Koltygin, “Analysis of possible phase transformations under crystallization and their effect on the cast structure in alloy ML10,” Metalloved. Term. Obrab. Met., No. 8, 25 – 28 (2013).

  7. S. R. Gorsse, B. Chevalier, et al., “A thermodynamic assessment of the Mg – Nd binary system using random solution and associate models for the liquid phase,” J. Alloys Compd., 392, 253 – 262 (2005).

    Article  Google Scholar 

  8. K. Yu. W.-X. Li, and R.-C. Wang, “Mechanical properties and microstructure of as-cast and extruded Mg – (Ce, Nd) – Zn – Zr alloys,” J. Cent. South Univ. Technol., 12(5), 499 – 505 (2005).

    Article  Google Scholar 

  9. H. Feng, H. Liu, H. Cao, et al., “Effect of precipitates on mechanical and damping properties of Mg – Zn – Y – Nd alloys,” Mater. Sci. Eng. A, 639, 1 – 7 (2015).

    Article  Google Scholar 

  10. H. Xu, J. Fan, H.-L. Chen, et al., “Experimental determination of the phase equilibria of the Mg – Nd – Zn system at 320°C,” J. Alloys Compd., 603, 100 – 110 (2014).

    Article  Google Scholar 

  11. J. Wang, R. Liu, X. Dong, et al., “Microstructure and mechanical properties of Mg – Zn – Y – Nd – Zr alloys,” J. Rare Earths, 31, 616 – 621 (2013).

    Article  Google Scholar 

  12. C. Frank and W. Kasprzak, “Heat treatment of magnesium alloys – current capabilities,” Mater. Sci. Forum, 765, 466 – 470 (2013).

    Article  Google Scholar 

  13. C. J. Bettles, M. A. Gibson, and S. M. Zhu, “Microstructure and mechanical behavior of an elevated temperature Mg-rare earth based alloy,” Mater. Sci. Eng. A, 505, 6 – 12 (2009).

    Article  Google Scholar 

  14. M. Beckert and H. Klemm, Handbuch der metallographischen Ätzverfahren, VEB Deutscher Verlag, Leipzig (1984).

  15. D. H. StJohn, M. Qian, M. A. Easton, et al., “Grain refinement of magnesium alloys,” Metall. Mater. Trans. A, 36A, 1669 – 1679 (2005).

  16. D. Vinotha, K. Raghukandan, U. T. S. Pillai, et al., “Grain refinement mechanisms in magnesium alloys – An overview,” Trans. Indian Inst. Metals, 62(6), 521 – 532 (2009).

  17. Y. C. Leem A. K. Dahle, and D. H. StJohn, “The role of solute in grain refinement of magnesium,” Metall. Mater. Trans. A, 31A, 2895 – 2906 (2000).

    Google Scholar 

  18. C. Wang, M. Sun, F. Zheng, et al., “Ding improvement in grain refinement efficiency of Mg – Zr master alloy for magnesium alloy by friction stir processing,” J. Magn. Alloys, 2, 239 – 244 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Koltygin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 26 – 32, July, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltygin, A.V., Bazhenov, V.E. & Nikitina, A.A. Effect of Neodymium and Zirconium on the Structure of Castable Magnesium Alloy ML10 (NZ30K). Met Sci Heat Treat 59, 422–428 (2017). https://doi.org/10.1007/s11041-017-0166-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0166-1

Key words

Navigation