Skip to main content
Log in

Role of Steel Object Surface Condition on Behavior During Deformation

  • STRENGTH. DEFORMATION
  • Published:
Metal Science and Heat Treatment Aims and scope

Comparative analysis is provided for specimen mechanical properties of steels 18KhGT and 20Kh with tensile testing in relation to surface treatment: grinding, polishing, nitriding, carburizing, and ion-plasma treatment. It is shown that surface condition has a considerable effect on specimen behavior during deformation. It is established that the most favorable effect applies to ion bombardment with low-energy ions recommended as an effective method for improving component structural strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The author means structural strength of material with a modified surface (editors note).

  2. Research was carried out with I. S. Tatarkina.

References

  1. V. P. Alekhin, Physics of Material Surface Layer Strength and Ductility [in Russian], Nauka, Moscow (1983).

  2. V. I. Shabalin, “Plastic deformation mechanism,” Dokl. Akad. Nauk. SSSR, 144(3), 551 – 554 (1962).

    Google Scholar 

  3. P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in a Solid [in Russian], Énergoatomizdat, Moscow (1990).

  4. H. Gleiter, “Nanostructured materials: basic concepts and microstructure,” Acta Mater., 48, 157 – 163 (2000).

    Article  Google Scholar 

  5. R. Z. Valiev, V. V. Gunderov, M. Yu. Murashkin, and I. P. Semenova, “Volumetric nanostructured materials and alloys with unique mechanical properties for prospective applications,” Vestn. UGATU, 7[3(16)], 23 – 34 (2006).

  6. F. Z. Utyashev, “Nanostructuring of metal materials by rapid plastic deformation,” Fiz. Tekhn. Vysokih Davlenii, 20(1), 7 – 25 (2010).

    Google Scholar 

  7. R. Z. Valiev and I, V. Eleksandrov, Nanostructured Materials Prepared by Rapid Plastic Deformation [in Russian], Logos, Moscow (2000).

  8. O. A. Kaibyshev and F. Z. Utyashev, Superplasticity, Structural Refinement and Treatment of Alloys Difficult to Deform [in Russian], Nauka, Moscow (2002).

  9. Yu. I. Golovin, Introduction to Nanotechnology [in Russian], Mashinostroenie, Moscow (2007).

  10. N. I. Noskova and R. R. Milyukov, Subcrystalline and Nanocrystalline Metals and Alloys [in Russian] URO RAN, Ekaterinburg (2003).

  11. S. S. D’yachenko, I. V. Ponomarenko, and I. V. Doshchechkina, “Effect of nanocrystalline coatings on properties of objects made of structural steel,” in: Proc. Internat. Conf. “Contemporary Materials Science; Achievements and Problems,” 26 – 30 September, 2005, Kiev (2005).

  12. V. E. Panin and A. V. Panin, “Effect of surface layer in a deformed solid,” Fiz. Mezomekhanika, 8(5), 7 – 15 (2005).

    Google Scholar 

  13. S. S. D’yachenko and I. V. Ponamarenko, “New aspect of using ion plasma treatment,” Metaloznavstvo ta Obrobka Metalliv, No. 3, 53 – 56 (2009).

  14. S. S. D’yachenko, I. V. Ponamarenko, and V. A. Zolot’ko, “Possibility of preparing nanostructures in massive objects and effect of nanostructuring on their properties,” Fiz. Inzh. Poverkh., 7(4), 385 – 396 (2009).

    Google Scholar 

  15. S. S. Dyachenko, I. V. Doshchechkina, I. V. Ponomarenko, and I. S. Tatarkina, “Use of the ion-plasma treatment for improving the structural strength of items,” J. Nano- and Electronic Physics, 4(1), 01020 (2012).

  16. S. S. D’yachenko, “Role of surface in object deformation and failure,” Vestn. Tambov. Univ., Ser. Estest. Nauki, 18(4), 1825 – 1826 (2013).

    Google Scholar 

  17. V. E. Panin, V. P. Sergeev, and A. V. Panin, “Nanostructuring of surface layers and application of nanostructured coatings—effective method for strengthening contemporary structural and tool materials,” Fiz. Met. Metalloved., 104(6), 650 – 660 (2007).

    Google Scholar 

  18. A. V. Rutkovskii, Construction of Strong Materials in Vacuum Plasma Coatings, Author’s Abstract of Candidate’s Thesis, Kiev (2000).

    Google Scholar 

  19. S. S. D’yachenko, N. G. Aleksandrov, E. L. Miloslavslavskaya, and V. A. Zolot’ko, Hydropressing as a Low-Waste Method for Object Manufacture with Improved Properties [in Russian], Izd. Osnova pri KhGU, Kharkov (1991).

  20. M. L. Bernshtein, Thermomechanical Treatment of Metals and Alloys, in 2 Vol.[in Russian], Metallurgiya (1968).

  21. M. L. Bernshtein, V. A. Zaimovskii, and L. M. Kaputkina, Steel Thermomechanical Treatment [in Russian], Metallurgiya, Moscow (1983).

  22. V. V. Stolyarov, “Features of mechanical properties of nanostructured alloys,” Vestn. Nauch.-Tekhn. Razvitiya, No. 3(31), 54 – 60 (2010).

  23. Yu. P. Shakeev, A. N. Didenko, and É. V. Kozlov, “Dislocation structure and strengthening ion-implanted metals and alloys,” Izv. Vyssh. Uchebn. Zaved., Fizika, No. 5, 92 – 108 (1994).

  24. É. V. Kozlov, I. V. Tereshko, and N. A. Popova, “Physical picture of modification of surface layers and volume of metals and alloys with action of low-energy plasma,” Izv. Vysh. Uchebn. Zaved., Fizika, No. 5, 27 – 140 (1994).

  25. Yu. V. Kunchenko, V. V. Kunchenko, and G. N. Kartmazov, “Deep zone of property modification (strengthening) for materials irradiated with T ≤ 100°C with low-energy plasma glow discharge,” Fiz. Inzh. Poverkh., 7(1 – 2), 46 – 53 (2009).

  26. Yu. V. Kunchenko, V. V. Kunchenko, G. N. Kartmazov, et al., “Effect of unstable low-energy glow discharge on properties of irradiated materials during vacuum-arc coating deposition,” Fiz. Inzh. Poverkh., 7(1 – 2), 133 – 141 (2009).

  27. S. N. Dub and N. V. Novikov, “Testing solids for nanohardness,” Sverhtverd. Mater., No. 6, 16 – 33 (2004).

  28. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7(6), 1564 – 1583 (1992.).

  29. A. F. Ioffe, “Mechanical properties of crystals,” Uspekhi Fiz. Nauk, 8(4), Leningrad (1928).

  30. Yu. V. Baranov, A. F. Ioffe Effect in Metals [in Russian], MGAU, Moscow (2005).

  31. R. A. Andrievskii and A. M. Glezer, “Dimensional effects in nanocrystalline materials,” Fiz. Met. Metalloved., 89(1), 910112 (2000).

  32. R. A. Andrievskii and A. M. Glezer, “Strength of nanostructures,” Uspekhi Fiz. Nauk, 179(4), 337 – 358 (2009).

    Article  Google Scholar 

  33. Yu. N. Golovin and A. I. Tyurin, “Nondislocation ductility and its role in mass transfer and formation of an impression with dynamic indentation,” Fiz. Tverd. Tela, 42(10), 1818 – 1820 (2000).

  34. V. E. Panin, “Surface layers as synergetic activators for plastic flow of a loaded solid,” Metalloved. Term. Obrab. Met., No. 7, 62 – 68 (2005).

  35. I. V. Ponomarenko, et al., “Method for improving structural strength of steel products, Ukraine Patent for useful model 55911, MPK C 2104, Khar’kov National Automobile and Road University, No. u201008421,” Byull. Izobr. Polezn. Modeli, No. 24 (2010), Claim 07.05.10, Publ. 12.27.10.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. D’yachenko.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 3 – 11,May, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachenko, S.S., Ponomarenko, I.V. & Dub, S.N. Role of Steel Object Surface Condition on Behavior During Deformation. Met Sci Heat Treat 57, 245–253 (2015). https://doi.org/10.1007/s11041-015-9869-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-015-9869-3

Key words

Navigation