Skip to main content
Log in

Fundamental role of nanoscale structural level of plastic strain in solids

  • Forum of Tomsk Metallurgists Scientific-and-Engineering Conference “Prospects of Development in Metallurgy”
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

A conceptual substantiation of the necessity to consider the nanoscale structural level of plastic strain in the physics of plasticity and strength of solids is presented. It is inferred that the fundamental mechanism of plastic strain is represented by local structural transformations (of the type of rearrangement of atomic clusters of various configurations) that occur in a loaded solid in local zones of tensile normal stresses. This mechanism determines generality of the nature of all possible kinds of plastic deformation of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Panin (ed.), Physical Mesomechanics and Computer-Aided Design of Materials [in Russian], Vol. 1, Nauka, Novosibirsk (1995).

    Google Scholar 

  2. V. E. Panin (ed.), Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials, Cambridge Interscience Publishing, Cambridge (1998).

    Google Scholar 

  3. V. E. Panin, “Synergetic principles of physical mesomechanics,” Theor. Appl. Fracture Mech., 37(1–3), 261–298 (2001).

    Article  Google Scholar 

  4. A. Zangwill, Physics of Surfaces, Cambridge University Press, Cambridge (1988).

    Google Scholar 

  5. V. E. Panin, “Physical mesomechanics of surface layers of solids,” Fiz. Mesomekh., 2(6), 5–23 (1999).

    Google Scholar 

  6. V. E. Panin, “Surface layers of solids as synergetic activators of plastic yielding of loaded solids,” Metalloved. Term. Obrab. Met., No. 7, 62–68 (2005).

  7. V. E. Panin and L. E. Panin, “Scale levels of homeostasis in deformed solid,” Fiz. Mesomekh., 7(4), 5–23 (2004).

    CAS  Google Scholar 

  8. A. Di Carlo, Actual Surfaces Versus Virtual Cuts. Whence the Boundary Conditions in Modern Continuum Physics? Roma Accademia Nazional dei Lincei (2004), pp. 97–113.

  9. V. S. Demidenko, N. L. Zaitsev, T. V. Menshikova, and L. F. Skorentsev, “Precursor of virtual β-phase in the electron structure of nanocluster in α-titanium,” Fiz. Mesomekh., 9(3), 55–60 (2006).

    CAS  Google Scholar 

  10. A. V. Panin, “Nonlinear waves of localized plastic flow in nanostructured surface layers of solids and in thin films,” Fiz. Mesomekh., 8(3), 5–17 (2005).

    CAS  Google Scholar 

  11. V. E. Panin, E. F. Dudarev, and L. S. Bushnev, Structure and Mechanical Properties of Substitutional Solid Solution [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  12. V. E. Panin, V. M. Fomin, and V. M. Titov, “Physical principles of mesomechanics of surface layers and internal interfaces in deformed solid,” Fiz. Mesomekh., 6(2), 5–14 (2003).

    CAS  Google Scholar 

  13. Yu. V. Grinyaev and V. E. Panin, “Design of stress state in elastically loaded polycrystal,” Izv. Vuzov, Fizika, No. 12, 95–101 (1978).

  14. V. E. Panin, V. S. Pleshanov, Yu. V. Grinyaev, and S. A. Kobzeva, “Formation of periodic mesoband structures due to stretching of polycrystals with extended interfaces,” PMTF, 39(4), 141–147 (1998).

    Google Scholar 

  15. G. P. Cherepanov, “On the theory of thermal stresses in a thin bonding layer,” J. Appl. Phys., 78, 6826–6832 (1995).

    Article  CAS  Google Scholar 

  16. D. D. Moiseenko, P. V. Maksimov, and I. A. Solov’ev, “Stochastic approach to multilevel simulation of perturbations on interfaces in a loaded solid,” Fiz. Mesomekh., 7(2), 19–24 (2004).

    Google Scholar 

  17. D. D. Moiseenko and P. V. Maksimov, “Stress and strain distribution on the ’surface layer-substrate’ interface,” Fiz. Mesomekh., 8(6), 89–96 (2005).

    Google Scholar 

  18. V. E. Egorushkin, “Dynamics of plastic strain. Waves of localized plastic strain in solids,” in: V. E. Panin (ed.), Physical Mesomechanics and Computer-Aided Design of Materials [in Russian], Nauka, Novosibirsk (1995), pp. 50–77.

    Google Scholar 

  19. L. B. Zuev and V. I. Danilov, “Slow wave processes in deformation of solid bodies,” Fiz. Mesomekh., 6(1), 75–94 (2003).

    CAS  Google Scholar 

  20. E. E. Deryugin, V. E. Panin, Z. Schmauder, and I. V. Storozhenko, “Effects of strain localization in an Al-base composite with inclusions of Al2O3,” Fiz. Mesomekh., 4(3), 35–47 (2001).

    CAS  Google Scholar 

  21. V. E. Panin, and S. V. Panin, “Mesoscale levels of plastic strain in aluminum polycrystals,” Ivz. Vuzov, Fizika, 40(1), 31–39 (1997).

    Google Scholar 

  22. V. E. Panin and A. V. Panin, “Effect of surface layer in deformed solid,” Fiz. Mesomekh., 8(5), 7–15 (2005).

    CAS  Google Scholar 

  23. V. P. Alekhin, The Physics of Strength and Plasticity of Surface Layers of Materials [in Russian], Nauka, Moscow (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 5–10, December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panin, V.E., Panin, A.V. Fundamental role of nanoscale structural level of plastic strain in solids. Met Sci Heat Treat 48, 533–538 (2006). https://doi.org/10.1007/s11041-006-0131-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-006-0131-x

Keywords

Navigation