Skip to main content
Log in

Existence and Uniqueness of Solutions to Backward 2D and 3D Stochastic Convective Brinkman–Forchheimer Equations Forced by Lévy Noise

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

The two- and three-dimensional incompressible backward stochastic convective Brinkman–Forchheimer (BSCBF) equations on a torus driven by Lévy noise are considered in this paper. A-priori estimates for adapted solutions of the finite-dimensional approximation of 2D and 3D BSCBF equations are obtained. For a given terminal data, the existence and uniqueness of pathwise adapted strong solutions is proved by using a standard Galerkin (or spectral) approximation technique and exploiting the monotonicity arguments. We also establish the continuity of the adapted solutions with respect to the terminal data. The above results are obtained for the absorption exponent \(r\in [1,\infty )\) for \(d=2\) and \(r\in [3,\infty )\) for \(d=3\), and any Brinkman coefficient \(\mu >0\), Forchheimer coefficient \(\beta >0\), and hence the 3D critical case (\(r=3\)) is also handled successfully. We deduce analogous results for 2D backward stochastic Navier–Stokes equations perturbed by Lévy noise also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. An \(\mathbb {H}\)-valued process X is optional if \(X:\Omega \times [0,T]\rightarrow \mathbb {H}\) is measurable with respect to the \(\sigma \)-algebra on \(\Omega \times [0,T]\) generated by the space of càdlàg -adapted processes, and the Borel \(\sigma \)-algebra on \(\mathbb {H}\).

References

  1. Antontsev, S.N., de Oliveira, H.B.: The Navier-Stokes problem modified by an absorption term. Appl. Anal. 89(12), 1805–1825 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, Vol. 93, Cambridge University Press, Cambridge (2004)

  3. Al-Hussein, A.: Backward stochastic partial differential equations driven by infinite-dimensional martingales and applications. Stochastics 81(6), 601–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardos, C., Tartar, L.: Sur l’unicité retrograde des équations paraboliques et questions voisines. Arch. Ration. Mech. Anal. 50, 10–25 (1973)

    Article  MATH  Google Scholar 

  5. Barbu, V., Röckner, M.: Backward uniqueness of stochastic parabolic like equations driven by Gaussian multiplicative noise. Stochastic Process. Appl. 126(7), 2163–2179 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bessaih, H., Millet, A.: On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity. J. Math. Anal. Appl. 462, 915–956 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Briand, P., Delyon, B., Hu, Y., Pardoux, E., Stoica, L.: \(L^p\) solutions of backward stochastic differential equations. Stochastic Process. Appl. 108, 109–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brzeźniak, Z., Dhariwal, G.: Stochastic tamed Navier-Stokes equations on \(\mathbb{R}^3\): the existence and the uniqueness of solutions and the existence of an invariant measure, J. Math. Fluid Mech., 22, Ar. 23 (2020)

  9. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.A.: Stochastic reaction-diffusion equations driven by jump processes. Potential Anal. 49, 131–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brzeźniak, Z., Hausenblas, E., Zhu, J.: 2D stochastic Navier-Stokes equations driven by jump noise. Nonlinear Anal. 79, 122–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burkholder, D.L.: The best constant in the Davis inequality for the expectation of the martingale square function. Trans. Am. Math. Soc. 354(1), 91–105 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, S., Tang, S.: Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Math. Control Relat. Fields 5(3), 401–434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  14. Davis, B.: On the integrability of the martingale square function. Israel J. Math. 8(2), 187–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delbaen, F., Tang, S.: Harmonic analysis of stochastic equations and backward stochastic differential equations. Probab. Theory Related Fields 146, 291–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delbaen, F., Qiu, J., Tang, S.: Forward-backward stochastic differential systems associated to Navier-Stokes equations in the whole space. Stochastic Process. Appl. 125(7), 2516–2561 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, Z., Zhang, R.: 3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: Existence, uniqueness and large deviations. J. Math. Anal. Appl. 492(1), 124404 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, K., Qiu, J., Tang, S.: \(L^p\) theory for super-parabolic backward stochastic partial differential equations in the whole space. Appl. Math. Optim. 65(2), 175–219 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, K., Tang, S.: Strong solution of backward stochastic partial differential equations in \(C^2\) domains. Probab. Theory Related Fields 154(1–2), 255–285 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, K., Tang, S., Zhang, Q.: \(W^{m, p}\)-solution (\(p\ge 2\)) of linear degenerate backward stochastic partial differential equations in the whole space. J. Differential Equations 254(7), 2877–2904 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Duffie, D., Epstein, L.: Stochastic differential utility. Econometrica 60, 353–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. El Karoui, N., Mazliak, L.: Backward Stochastic Differential Equations. Longman, Harlow, HK (1997)

    MATH  Google Scholar 

  23. Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fefferman, C.L., Hajduk, K.W., Robinson, J.C.: Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces. Proc. Lond. Math. Soc. (3)125(4), 759–777 (2022)

  25. Fernando, B.P.W., Sritharan, S.S.: Nonlinear filtering of stochastic Navier-Stokes equation with Itô-Lévy noise. Stoch. Anal. Appl. 31(3), 381–426 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary value problem. pp. 11–70 in Fundamental directions in mathematical fluid mechanics. Adv. Math. Fluid Mech. Birkhaüser, Basel (2000)

  27. Ghidaglia, J.M.: Some backward uniqueness results. Nonlinear Anal. TMA 10(8), 777–790 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hajduk, K.W., Robinson, J.C.: Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J. Differential Equations 263, 7141–7161 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Hong, Y.: Stochastic analysis of backward tidal dynamics equation. Commun. Stoch. Anal. 5(4), 745–768 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Hu, Y., Ma, J., Yong, J.: On semi-linear degenerate backward stochastic partial differential equations. Probab. Theory Related Fields 123, 381–411 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, Y., Peng, S.: Adapted solution of a backward semilinear stochastic evolution equations. Stoch. Anal. Appl. 9, 445–459 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ichikawa, A.: Some inequalities for martingales and stochastic convolutions. Stoch. Anal. Appl. 4(3), 329–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Publishing Company, Amsterdam (1981)

    MATH  Google Scholar 

  34. Kalantarov, V.K., Zelik, S.: Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure. Appl. Anal. 11, 2037–2054 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Kruse, T., Popier, A.: Lp-solution for BSDEs with jumps in the case \(p<2\): corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration’. Stochastics 89(8), 1201–1227 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kukavica, I.: Log-log convexity and backward uniqueness. Proc. Amer. Math. Soc. 135(8), 2415–2421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kumar, P., Mohan, M.T.: Well-posedness of an inverse problem for two and three dimensional convective Brinkman-Forchheimer equations with the final overdetermination. Inverse Probl. Imaging 16(5), 1255–1298 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kumar, P., Mohan, M.T.: Existence, uniqueness and stability of an inverse problem for two-dimensional convective Brinkman–Forchheimer equations with the integral overdetermination. Banach J. Math. Anal. 16(4), Paper No. 58, 32 pp (2022)

  39. Kunita, H.: Stochastic flows and jump-diffusions, Probability Theory and Stochastic Modelling, 92. Springer, Singapore (2019)

    Book  MATH  Google Scholar 

  40. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  41. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1978)

    Google Scholar 

  42. Liu, H., Gao, H.: Stochastic 3D Navier-Stokes equations with nonlinear damping: martingale solution, strong solution and small time LDP, Chapter 2 in Interdisciplinary Mathematical SciencesStochastic PDEs and Modelling of Multiscale Complex System, 9–36 (2019)

  43. Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differ. Equ. 254, 725–755 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Liu, W., Zhu, R.: Well-posedness of backward stochastic partial differential equations with Lyapunov condition. Forum Math. 32(3), 723–738 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma, J., Yong, J.: Adapted solution of a degenerate backward SPDE, with applications. Stochastic Process. Appl. 70, 59–84 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ma, J., Yong, J.: On linear, degenerate backward stochastic partial differential equations. Probab. Theory Related Fields 113, 135–170 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ma, J., Protter, P., Yong, J.: Solving forward-backward stochastic differential equations explicitly: a four step scheme. Probab. Theory Related Fields 98, 339–359 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Markowich, P.A., Titi, E.S., Trabelsi, S.: Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity 29(4), 1292–1328 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Manna, U., Mohan, M.T., Sritharan, S.S.: Stochastic non-resistive magnetohydrodynamic system with Lévy noise. Random Oper. Stoch. Equ. 25(3), 155–194 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Menaldi, J.-L., Sritharan, S.S.: Stochastic 2-D Navier-Stokes equation. Appl. Math. Optim. 46(1), 31–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Métivier, M.: Stochastic partial differential equations in infinite-dimensional spaces. Quaderni, Scuola Normale Superiore, Pisa (1988)

    MATH  Google Scholar 

  52. Mohan, M.T.: On convective Brinkman-Forchheimer equations, Submitted

  53. Mohan, M.T.: Stochastic convective Brinkman-Forchheimer equations. arXiv:2007.09376

  54. Mohan, M.T.: Well-posedness and asymptotic behavior of stochastic convective Brinkman–Forchheimer equations perturbed by pure jump noise. Stoch. PDE: Anal. Comp. 10, 614–690 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Mohan, M.T.: \({\mathbb{L}}^p\)-solutions of deterministic and stochastic convective Brinkman-Forchheimer equations. Anal. Math. Phys. 11, Ar. No.: 164 (2021)

  56. Mohan, M.T.: Martingale solutions of two and three dimensional stochastic convective Brinkman-Forchheimer equations forced by Lévy noise, Submitted. arXiv:2109.05510

  57. Motyl, E.: Stochastic Navier-Stokes equations driven by Lévy noise in unbounded 3D domains. Potential Anal. 38, 863–912 (2013)

    MathSciNet  MATH  Google Scholar 

  58. Oksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 3rd edn. Springer, New York (2019)

    Book  MATH  Google Scholar 

  59. Oksendal, B., Proske, F., Zhang, T.: Backward stochastic partial differential equations with jumps and application to optimal control of random jump fields. Stochastics 77(5), 381–399 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  61. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press, Cambridge, UK (2007)

    Book  MATH  Google Scholar 

  62. Pardoux, E., Rascanu, A.: Stochastic Differential Equations. Backward SDEs, Partial Differential Equations, Springer, Cham (2014)

    MATH  Google Scholar 

  63. Qiu, J., Tang, S., You, Y.: 2D backward stochastic Navier-Stokes equations with nonlinear forcing. Stochastic Process. Appl. 122(1), 334–356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Robinson, J.C.: Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics (2001)

  65. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier-Stokes Equations. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Classical Theory (2016)

  66. Robinson, J.C., Sadowski, W.: A local smoothness criterion for solutions of the 3D Navier-Stokes equations. Rend. Semin. Mat. Univ. Padova 131, 159–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Robinson, J.C.: Attractors and finite-dimensional behaviour in the 2D Navier-Stokes equations. ISRN Math. Anal. 2013, Art. ID 291823, 29 pp

  68. Röckner, M., Zhang, X.: Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 525–549 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier-Stokes equation: existence, uniqueness and ergodicity. Probab. Theory Related Fields 145, 211–267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Rong, S.: On solutions of backward stochastic differential equations with jumps and applications. Stochas. Process. Appl. 66, 209–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rong, S.: Theory of Stochastic Differential Equations with Jumps and Applications. Springer, New York (2005)

    MATH  Google Scholar 

  72. Sakthivel, K., Sritharan, S.S., Sivaguru, S.: Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evol. Equ. Control Theory 1(2), 355–392 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sritharan, S.S.: An Introduction to Deterministic and Stochastic Control of Viscous Flow, Chapter in Optimal Control of Viscous Flow, 1–42. SIAM, Philadelphia, PA (1998)

    Google Scholar 

  74. Sritharan, S.S.: Deterministic and stochastic control of Navier-Stokes equation with linear, monotone, and hyperviscosities. Appl. Math. Optim. 41(2), 255–308 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  75. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stochastic Process. Appl. 116, 1636–1659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sundar, P., Yin, H.: Existence and uniqueness of solutions to the backward stochastic Lorenz system. Commun. Stoch. Anal. 1(3), 473–483 (2007)

    MathSciNet  MATH  Google Scholar 

  77. Sundar, P., Yin, H.: Existence and uniqueness of solutions to the backward 2D stochastic Navier-Stokes equations. Stochastic Process. Appl. 119, 1216–1234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  78. Tang, S.: Semi-linear systems of backward stochastic partial differential equations in \({\mathbb{R} }^n\). Chin. Ann. Math. Ser. B 26, 437–456 (2005)

    Article  MATH  Google Scholar 

  79. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  80. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd Edition, CBMS-NSF Regional Conference Series in Applied Mathematics (1995)

  81. Yao, S.: \({\mathbb{L} }^p\) solutions of backward stochastic differential equations with jumps. Stochastic Process. Appl. 127(11), 3465–3511 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  82. Yong, J., Zhou, X.Y.: Stochastic Controls-Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    MATH  Google Scholar 

  83. Zhang, J.: Backward Stochastic Differential Equations. Springer, New York (2017)

    Book  Google Scholar 

  84. Zhou, Q., Ren, Y., Wu, W.: On solutions to backward stochastic partial differential equations for Lévy processes., J. Comput. Appl. Math.235(18), 5411–5421 (2011)

Download references

Acknowledgements

M. T. Mohan would like to thank the Department of Science and Technology (DST), Govt of India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110). The author is extremely thankful for the insightful comments and recommendations provided by the reviewers that have enabled them to enhance the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manil T. Mohan.

Ethics declarations

Conflict of interest

The author has no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, M.T. Existence and Uniqueness of Solutions to Backward 2D and 3D Stochastic Convective Brinkman–Forchheimer Equations Forced by Lévy Noise. Math Phys Anal Geom 26, 16 (2023). https://doi.org/10.1007/s11040-023-09458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-023-09458-5

Keywords

Mathematics Subject Classification

Navigation