Skip to main content
Log in

Initial Value Problems for Wave Equations on Manifolds

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the global theory of linear wave equations for sections of vector bundles over globally hyperbolic Lorentz manifolds. We introduce spaces of finite energy sections and show well-posedness of the Cauchy problem in those spaces. These spaces depend in general on the choice of a time function but it turns out that certain spaces of finite energy solutions are independent of this choice and hence invariantly defined. We also show existence and uniqueness of solutions for the Goursat problem where one prescribes initial data on a characteristic partial Cauchy hypersurface. This extends classical results due to Hörmander.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Hyperbolic partial differential equations. Springer-Verlag, Dordrecht (2009)

    Book  MATH  Google Scholar 

  2. Alt, H.W.: Lineare Funktionalanalysis, 6. edn. Springer-Verlag, Berlin-Heidelberg (2012)

    Book  Google Scholar 

  3. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization, European Mathematical Society, Zürich (2007)

  4. Baum, H., Kath, I.: Normally hyperbolic operators, the Huygens property and conformal geometry. Ann. Glob. Ana. Geom. 14, 315–371 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian geometry, 2. edn. Marcel Dekker, New York (1996)

    Google Scholar 

  6. Bernal, A., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  7. Bernal, A., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bernal, A., Sánchez, M.: Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’, . Class. Quant. Grav. 24, 745–749 (2007)

    Article  ADS  MATH  Google Scholar 

  9. Cagnac, F.: Problème de Cauchy sur un conoïde caractéristique pour des équations quasi-linéaires. Ann. Mat. Pura. Appl. 129, 13–41 (1982)

    Article  MathSciNet  Google Scholar 

  10. Choquet-Bruhat, Y., Chruściel, P.T., Martín-García, J.M.: An existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations. Contemp. Math. 554, 73–81 (2011)

    Article  Google Scholar 

  11. Chruściel, P.T., Paetz:, T.-T.: The many ways of the characteristic Cauchy problem. Class. Quant. Grav. 29(14), 145006, 27 (2012)

    Google Scholar 

  12. Dafermos, M.: Black hole formation from a complete regular past. Commun. Math. Phys. 289, 579–596 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ding, Z.: A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Amer. Math. Soc. 124, 591–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dossa, M.: Solutions \(C^{\infty }\) d’une classe de problèmes de Cauchy quasi-linéaires hyperboliques du second ordre sur un conoïde caractéristique. Ann. Fac. Sci. Toulouse. Math. 11, 351–376 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedlander, F.G.: The wave equation on a curved space-time. Cambridge University Press, Cambridge-New York-Melbourne (1975)

    MATH  Google Scholar 

  16. Gérard, C., Wrochna, M.: Construction of Hadamard states by characteristic Cauchy problem. arXiv:1409.6691

  17. Günther, P.: Huygens’ principle and hyperbolic equations. Academic Press, Boston (1988)

    MATH  Google Scholar 

  18. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, London-New York (1973)

    Book  MATH  Google Scholar 

  19. Hörmander, L.: A remark on the characteristic Cauchy problem. J. Funct. Anal. 93, 270–277 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hörmander, L.: Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, Berlin (1997)

    MATH  Google Scholar 

  21. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Alekseevsky, D., Baum, H. (eds.) Recent developments in pseudo-Riemannian geometry, pp. 299–358. European Mathematical Society, Zürich (2008)

    Chapter  Google Scholar 

  22. Nicolas, J.-P.: On Lars Hörmander’s remark on the characteristic Cauchy problem. Ann. Inst. Fourier (Grenoble) 56, 517–543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. O’Neill, B.: Semi-Riemannian geometry. With applications to relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  24. Rademacher, H.: Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln. II. Math. Ann 81, 52–63 (1920)

    Article  MathSciNet  Google Scholar 

  25. Rendall, A.: Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. Roy. Soc. London Ser. A 427, 221–239 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Shatah, J., Struwe, M.: Geometric wave equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bär.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bär, C., Wafo, R.T. Initial Value Problems for Wave Equations on Manifolds. Math Phys Anal Geom 18, 7 (2015). https://doi.org/10.1007/s11040-015-9176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-015-9176-7

Keywords

Mathematics Subject Classification (2010)

Navigation