Skip to main content
Log in

Packing Soft Convex Polygons in an Optimized Convex Container

  • Research
  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Packing soft convex polygonal objects in an optimized convex container is considered. The shape of the soft object can be changed in certain limits, but the object remains convex and maintains its area unchanged under all shape transformations. Non-overlapping, containment, as well as convexity and area conservation constraints are presented. A nonlinear programming model is formulated to find the optimal container for fixed values of elasticity parameters. An inverse problem is considered to find the minimal value of the elasticity parameter resulting in the same optimal container. Numerical experiments for packing soft triangles and pentagons in optimized circular and square containers are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wascher G, Haußner H, Schumann H (2007) An improved typology of cutting and packing problems. Eur J Oper Res 183:1109–1130

    Article  Google Scholar 

  2. Kallrath J, Romanova T, Pankratov A, Litvinchev I, Infante L (2023) Packing convex polygons in minimum-perimeter convex hulls. J Global Optim 85:39–59. https://doi.org/10.1007/s10898-022-01194-4

    Article  MathSciNet  Google Scholar 

  3. Zuo Q, Liu X, Xu L, Xiao L, Xu C, Liu J, Chan WKV (2022) The three-dimensional bin packing problem for deformable items. 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Kuala Lumpur, Malaysia. pp 0911–0918. https://doi.org/10.1109/IEEM55944.2022.9989600

  4. Zuo Q, Liu X, Chan WKV (2022) A constructive heuristic algorithm for 3D bin packing of irregular shaped items. In: Qiu R, Chan WKV, Chen W, Badr Y, Zhang C (eds) City, society, and digital transformation. INFORMS-CSS 2022 lecture notes in operations research. Springer, Cham, pp 393–406. https://doi.org/10.1007/978-3-031-15644-1_29

    Chapter  Google Scholar 

  5. Ma W, Zhang B, Han L, Huo S, Wang H, Navarro-Alarcon D (2023) Action planning for packing long linear elastic objects into compact boxes with bimanual robotic manipulation. IEEE/ASME Trans Mechatron 28(3):1718–1729. https://doi.org/10.1109/TMECH.2022.3223990

    Article  Google Scholar 

  6. Fügenschuh A, Junosza-Szaniawski K, Lonc Z (2014) Exact and approximation algorithms for a soft rectangle packing problem. Optimization 63(11):1637–1663

    Article  MathSciNet  Google Scholar 

  7. Ji P, He K, Jin Y, Lan H, Li C (2017) An iterative merging algorithm for soft rectangle packing and its extension for application of fixed-outline floorplanning of soft modules. Comput Oper Res 86:110–123

    Article  MathSciNet  Google Scholar 

  8. Brenner U (2018) γ -Soft packings of rectangles. Comput Geom 70:49–64

    Article  MathSciNet  Google Scholar 

  9. Bui QT, Vida T, Hà MH (2019) On three soft rectangle packing problems with guillotine constraints. J Glob Optim 74:45–62

    Article  MathSciNet  Google Scholar 

  10. Winkelmann J, Chan HK (2023) Columnar structures of spheres: Fundamentals and applications. Jenny Stanford Publishing, NY. https://doi.org/10.1201/9780429092114

    Book  Google Scholar 

  11. Winkelmann J (2020) Structures of columnar packings with soft and hard spheres, PhD Thesis, School of Physics, Trinity College Dublin

  12. Romanova T, Stoyan Yu, Pankratov A, Litvinchev I, Kravchenko O, Duryagina Z, Melashenko O, Chugai A (2023) Optimized packing soft ellipses. In: Manshahia MS, Litvinchev I, Thomas JJ, Vasant P, Weber WG (eds) Human assisted intelligent computing: modelling, simulations and applications, chapter 9. IOP, United Kingdom, pp 1–16. https://doi.org/10.1088/978-0-7503-4801-0ch9

    Chapter  Google Scholar 

  13. Coutinho JPL, Reis MS, Gonçalves Neves DFM, Bernardo FP (2023) Robust optimization and data-driven modeling of tissue paper packing considering cargo deformation. Comput Ind Eng 175:108898. https://doi.org/10.1016/j.cie.2022.108898

    Article  Google Scholar 

  14. Jiang J, Garikipati K, Rudraraju S (2019) A diffuse interface framework for modeling the evolution of multi-cell aggregates as a soft packing problem driven by the growth and division of cells. Bull Math Biol 81:3282–3300

    Article  MathSciNet  Google Scholar 

  15. Yuan Q, Li Z, Gao Y, Wang YH, Li X (2019) Local responses in 2D assemblies of elliptical rods when subjected to biaxial shearing. Acta Geotech 14:1685–1697

    Article  Google Scholar 

  16. Chen Y, Yuan M, Wang Z, Zhao Y, Li J, Hu B, Xia C (2021) Structural characterization and statistical properties of jammed soft ellipsoid packing. Soft Matter 17:2963. https://doi.org/10.1039/d0sm01699c

    Article  Google Scholar 

  17. Guo R, Li J, Ai B (2023) Melting of two-dimensional deformable particle systems. Physica A 623:128833. https://doi.org/10.1016/j.physa.2023.128833

    Article  Google Scholar 

  18. Huang Z, Deng W, Zhang S, Li S (2023) Optimal shapes of disk assembly in saturated random packings. Soft Matter 19(18):3325–3336. https://doi.org/10.1039/D3SM00166K

    Article  Google Scholar 

  19. Boromand A, Signoriello A, Ye F, O'Hern CS, Shattuck MD (2018) Jamming of deformable polygons. Phys Rev Lett 121(24) 248003. https://link.aps.org/doi/10.1103/PhysRevLett.121.248003. Accessed 03 Dec 2023

  20. Lewis BA, Robinson JS (1978) Triangulation of planar regions with applications. Comput J 21(4):324–332. https://doi.org/10.1093/comjnl/21.4.324

    Article  Google Scholar 

  21. Hartmann S (2000) Packing problems and project scheduling models: an integrating perspective. J Oper Res Soc 51:1083–1092

    Article  Google Scholar 

  22. Fasano G (2014) Solving non-standard packing problems by global optimization and heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-05005-8

    Book  Google Scholar 

  23. Litvinchev I, Romanova T, Corrales-Diaz R, Esquerra-Arguelles A, Martinez-Noa A (2020) Lagrangian approach to modeling placement conditions in optimized packing problems. Mob Netw Appl 25:2126–2133

    Article  Google Scholar 

  24. Sahinidis NV (2019) BARON 19.12.7: global optimization of mixed-integer nonlinear programs, User's manual

  25. Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Math Program 103(2):225–249

    Article  MathSciNet  Google Scholar 

  26. Allgower EL, Schmidt PH (1986) Computing volumes of polyhedra. Math Comput 46(173):171–174

    Article  MathSciNet  Google Scholar 

  27. Braden B (1986) The surveyor’s area formula. Coll Math J 17(4):326–337

    Article  Google Scholar 

  28. Hill FS Jr (1994). In: Heckbert PS (ed) Graphics gems IV. Academic Press, San Diego, pp 138–148

    Chapter  Google Scholar 

  29. Miettinen K (2012) Nonlinear multiobjective optimization. Springer, New York. https://doi.org/10.1007/978-1-4615-5563-6

    Book  Google Scholar 

  30. Fourer R, Gay DM, Kernighan BW (1989) AMPL: a mathematical programing language. In: Wallace SW (ed) Algorithms and model formulations in mathematical programming. NATO ASI series, vol 51. Springer, Berlin. https://doi.org/10.1007/978-3-642-83724-1_12

    Chapter  Google Scholar 

  31. Czyzyk J, Mesnier MP, Moré JJ (1998) The NEOS server. IEEE J Comput Sci Eng 5(3):68–75

    Article  Google Scholar 

  32. Dolan E (2001) The NEOS Server 4.0 administrative guide. Technical memorandum ANL/MCS-TM-250, mathematics and computer science division. Argonne National Laboratory. Available at https://www.mcs.anl.gov/papers/TM-250.pdf. Accessed 03 Dec 2023

  33. Gropp W, Moré JJ (1997). Optimization environments and the NEOS server: Tributes to M.J.D. Powell. In: Buhmann MD, Iserles A (eds) Approximation theory and optimization. Cambridge University Press, pp 167–182

  34. Romanova T, Stoyan Y, Pankratov A, Litvinchev I, Plankovskyy S, Tsegelnyk Y, Shypul O (2021) Sparsest balanced packing of irregular 3D objects in a cylindrical container. Eur J Oper Res 291(1):84–100. https://doi.org/10.1016/j.ejor.2020.09.021

    Article  MathSciNet  Google Scholar 

  35. Litvinchev I (2007) Refinement of lagrangian bounds in optimization problems. Comput Math Math Phys 47(7):1101–1108. https://doi.org/10.1134/S0965542507070032

    Article  MathSciNet  Google Scholar 

  36. Litvinchev I, Rangel S, Saucedo J (2010) A Lagrangian bound for many-to-many assignment problems. J Comb Optim 19(3):241–257. https://doi.org/10.1007/s10878-008-9196-3

    Article  MathSciNet  Google Scholar 

  37. Litvinchev I, Ozuna L (2012) Lagrangian bounds and a heuristic for the two-stage capacitated facility location problem. Int J Energy Optim Eng 1(1):60–72. https://doi.org/10.4018/ijeoe.2012010104

    Article  Google Scholar 

Download references

Acknowledgements

Tetyana Romanova would like to thank the British Academy (grant #100072) for the overall support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, I.L. and T.R.; methodology, I.L., L.I., and T.R.; software, L.I., A.M. and L.G.; investigation, I.L., L.I. and T.R.; writing (original draft preparation), I.L., L.I., T.R., A.M., L.G.; numerical experiments and visualization, L.I., A.M., L.G. All authors reviewed the manuscript.

Corresponding author

Correspondence to Igor Litvinchev.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinchev, I., Infante, L., Romanova, T. et al. Packing Soft Convex Polygons in an Optimized Convex Container. Mobile Netw Appl (2024). https://doi.org/10.1007/s11036-023-02286-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11036-023-02286-5

Keywords

Navigation