Skip to main content

Advertisement

Log in

Design in Power-Domain NOMA: Eavesdropping Suppression in the Two-User Relay Network with Compensation for the Relay User

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Non-orthogonal multiple access (NOMA) is becoming important in 5G, therefore, it is widely researched. Note that the users served in NOMA are often paired to prevent excessive interference. However, if the channel condition of direct downlink from the service node to one user is serious, the node may require the other user with better channel condition to relay this user’s signals, especially when the pure relay is difficult to deploy. This relay transmission is helpful for NOMA communication, but two problems should be considered: (i) how to persuade the relay user (i.e., the user with better channel condition) to expend extra resources for relay; (ii) how to suppress eavesdropping in the relay transmission, especially for the signals of indirect communication user (i.e., the user with worse channel condition). To solve these problems, we propose a novel signal-level scheme. In this scheme, on one hand, the node increases the spectral efficiency of relay user, and does the wireless power transfer to make the relay user supplement his/her energy by energy harvesting. On the other hand, a signal transformation method is designed to deal with each signal of indirect communication user. This transformation hides privacy information of indirect communication user, but does not disrupt the relay transmission. Utilizing the proposed scheme, the above problems are effectively solved by the compensation for the relay user and the signal protection for the indirect communication user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrews JG et al (2014) What will 5G be?. IEEE J Sel Areas Commun 32(6):1065–1082

    Article  Google Scholar 

  2. I CL et al (2016) New paradigm of 5G wireless internet. IEEE J Sel Areas Commun 34(3):474–482

    Article  Google Scholar 

  3. Dai L et al (2015) Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun Mag 53(9):74–81

    Article  Google Scholar 

  4. Ding Z et al (2017) Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun Mag 55(2):185–191

    Article  Google Scholar 

  5. Luo FL, Zhang C (2016) Signal processing for 5G: algorithms and implementations. Wiley, Hoboken

    Book  Google Scholar 

  6. Ding Z, Schober R, Poor HV (2016) A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans Wirel Commun 15(6):4438–4454

    Article  Google Scholar 

  7. Razavi R, Imari MA, Imran MA, Hoshyar R, Chen D (2012) On receiver design for uplink low density signature OFDM (LDS-OFDM). IEEE Trans Commun 60(11):3499–3508

    Article  Google Scholar 

  8. Nikopour H, Baligh H (2013) Sparse code multiple access. In: IEEE international symposium on personal, indoor and mobile radio communications (PIMRC), pp 332–336

  9. Yuan Z, Yu G, Li W (2015) Multi-user shared access for 5G. Telecommun Network Technology 5 (5):28–30

    Google Scholar 

  10. Chen S et al (2017) Pattern division multiple access-a novel non-orthogonal multiple access for fifth-generation radio networks. IEEE Trans Veh Technol 66(4):3185–3196

    Article  Google Scholar 

  11. Huang J et al (2014) Scalable video broadcasting using bit division multiplexing. IEEE Trans Broadcast 60 (4):701–706

    Article  Google Scholar 

  12. Kusume K, Bauch G, Utschick W (2012) IDMA Vs. CDMA: analysis and comparison of two multiple access schemes. IEEE Trans Wireless Commun 11(1):78–87

    Article  Google Scholar 

  13. Fang D, Huang YC, Ding Z, Geraci G, Shieh SL, Claussen H (2016) Lattice partition multiple access: a new method of downlink non-orthogonal multiuser transmissions. arXiv:1604.05169

  14. Ding Z, Adachi F, Poor HV (2016) The application of MIMO to non-orthogonal multiple access. IEEE Trans Wireless Commun 15(1):537–552

    Article  Google Scholar 

  15. Shin W et al (2017) Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun Lett 21(1):84–87

    Article  Google Scholar 

  16. Han W et al (2016) Orthogonal power division multiple access: a green communication perspective. IEEE J Sel Areas Commun 34(12):3828–3842

    Article  Google Scholar 

  17. Liu Y, Ding Z, Elkashlan M, Poor HV (2016) Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE J Sel Areas Commun 34(4):938–953

    Article  Google Scholar 

  18. Lei L, Yuan D, Ho CK, Sun S (2016) Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation. IEEE Trans Wireless Commun 15(12):8580–8594

    Article  Google Scholar 

  19. Xu QC, Su Z, Guo S (2016) A game theoretical incentive scheme for relay selection services in mobile social networks. IEEE Trans Veh Technol 65(8):6692–6702

    Article  Google Scholar 

  20. Su Z, Qi QF, Xu QC, Guo S, Wang XW (2017) Incentive scheme for cyber physical social systems based on user behaviors. appear to IEEE Trans. Emerging Topics in Computing

  21. Sun RJ, Wang Y, Wang XS, Zhang Y (2016) Transceiver design for cooperative non-orthogonal multiple access systems with wireless energy transfer. IET Commun 10(15):1947–1955

    Article  Google Scholar 

  22. Jiang X et al (2016) Secrecy performance of wirelessly powered wiretap channels. IEEE Trans Commun 64 (9):3858–3871

    Article  Google Scholar 

  23. Nguyen VD, Duong TQ, Tuan HD, Shin OS, Poor HV (2017) Spectral and energy efficiencies in full-duplex wireless information and power transfer. IEEE Trans Commun 65(5):2220–2233

    Article  Google Scholar 

  24. Di X, Xiong K, Fan P, Yang HC (2017) Simultaneous wireless information and power transfer in cooperative relay networks with rateless codes. IEEE Trans Veh Technol 66(4):2981–2996

    Article  Google Scholar 

  25. Xu DT, Ren PY, Du QH, Sun L, Wang YC (2017) Design for NOMA: combat eavesdropping and improve spectral efficiency in the two-user relay network. In: Accepted by IEEE global communications conference (IEEE GLOBECOM 2017)

  26. Lv L, Chen J, Ni Q, Ding Z (2017) Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: user scheduling and performance analysis. IEEE Trans. Wireless Commun 65(6):2641–2656

    Article  Google Scholar 

  27. Do NT et al (2017) A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Commun Lett 21(3):664–667

    Article  Google Scholar 

  28. Sun H, Wang Q, Hu RQ, Yi Qian (2017) Outage probability study in a NOMA relay system. In: IEEE wireless communications and networking conference (WCNC), pp 1–6

  29. Liang Z, Chen X, Huang J (2016) Non-orthogonal multiple access with buffer-aided cooperative relaying. In: IEEE international conference on computer and communications (ICCC), pp 1535–1539

  30. Gendia AH, Elsabrouty M, Emran AA (2017) Cooperative multi-relay non-orthogonal multiple access for downlink transmission in 5G communication systems. Wireless Days :89–94

  31. Mukherjee A, Fakoorian SAA, Huang J, Swindlehurst AL (2014) Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tutorials 16(3):1550–1573

    Article  Google Scholar 

  32. Bloch M, Barros J (2011) Physical-layer security: from information theory to security engineering. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  33. Thai CDT, Lee J, Quek TQS (2016) Physical-layer secret key generation with colluding untrusted relays. IEEE Trans Wirel Commun 15(2):1517–1530

    Article  Google Scholar 

  34. Zhang J, Marshall A, Woods R, Duong TQ (2016) Efficient key generation by exploiting randomness from channel responses of individual OFDM subcarriers. IEEE Trans Commun 64(6):2578–2588

    Article  Google Scholar 

  35. Wang X, Zhang Z, Long K (2016) Secure beamforming for multiple antenna amplify-and-forward relay networks. IEEE Trans Signal Process 64(6):1477–1492

    Article  MathSciNet  Google Scholar 

  36. Zou YL, Wang XB, Shen WM (2013) Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE J Sel Areas Commun 31(10):2099–2111

    Article  Google Scholar 

  37. Li Q et al (2015) Robust cooperative beamforming and artificial noise design for physical-layer secrecy in AF multi-antenna multi-relay networks. IEEE Trans Signal Process 63(1):206–220

    Article  MathSciNet  Google Scholar 

  38. Hu J et al (2017) Artificial-noise-aided secure transmission scheme with limited training and feedback overhead. IEEE Trans Wirel Commun 16(1):193–205

    Article  Google Scholar 

  39. Liu Y et al (2017) Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Trans Wirel Commun 16(3):1656–1672

    Article  Google Scholar 

  40. Kalamkar SS, Banerjee A (2017) Secure communication via a wireless energy harvesting untrusted relay. IEEE Trans Veh Technol 66(3):2199–2213

    Article  Google Scholar 

  41. Wang D, Bai B, Chen W, Han Z (2016) Secure green communication via untrusted two-way relaying: a physical layer approach. IEEE Trans Commun 64(5):1861–1874

    Article  Google Scholar 

  42. Wang W, Teh KC, Li KH (2016) Relay selection for secure successive AF relaying networks with untrusted nodes. IEEE Trans Inf Forensics Secur 11(11):2466–2476

    Article  Google Scholar 

  43. Xiong J, Cheng L, Ma D, Wei J (2016) Destination-aided cooperative jamming for dual-hop amplify-and-forward MIMO untrusted relay systems. IEEE Trans Veh Technol 65(9):7274–7284

    Article  Google Scholar 

  44. Sun L, Du Q, Ren P, Wang Y (2016) Two birds with one stone: towards secure and interference-free D2D transmissions via constellation rotation. IEEE Trans Veh Technol 65(10):8767– 8774

    Article  Google Scholar 

  45. Ma R et al (2010) Secure communication in TDS-OFDM system using constellation rotation and noise insertion. IEEE Trans Consum Electro 56(3):1328–1332

    Article  Google Scholar 

  46. Kalantari A et al (2016) Directional modulation via symbol-level precoding: a way to enhance security. IEEE J Sel Top Sign Proces 10(8):1478–1493

    Article  Google Scholar 

  47. Wang J et al (2013) Robust MIMO precoding for several classes of channel uncertainty. IEEE Trans Signal Process 61(12):3056–3070

    Article  Google Scholar 

  48. Bogale TE, Vandendorpe L, Chalise BK (2012) Robust transceiver optimization for downlink coodinated base station systems: distributed algorithm. IEEE Trans Signal Process 60(1):337–349

    Article  MathSciNet  MATH  Google Scholar 

  49. Gao F, Cui T, Nallanathan A (2008) On channel estimation and optimal training design for amplify and forward relay network. IEEE Trans Wirel Commun 7(5):1907–1916

    Article  Google Scholar 

  50. Gao F, Zhang R, Liang YC (2009) Optimal channel estimation and training design for two-way relay networks. IEEE Trans Commun 57(10):3024–3033

    Article  Google Scholar 

  51. Faruque S (2015) Radio frequency propagation made easy. Springer Press, Berlin

    Book  Google Scholar 

  52. Baum DS, Hansen J, Salo J (2005) An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). In: IEEE vehicular technology conference (VTC 2005-Spring), pp 3132–3136

Download references

Acknowledgements

The research reported in this paper is supported by the National Natural Science Foundation of China under the Grant No. 61461136001, the National Science and Technology Major Project of China under Grant No. 2016ZX03001012-004, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinyi Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Ren, P., Du, Q. et al. Design in Power-Domain NOMA: Eavesdropping Suppression in the Two-User Relay Network with Compensation for the Relay User. Mobile Netw Appl 23, 1068–1079 (2018). https://doi.org/10.1007/s11036-017-0965-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0965-z

Keywords

Navigation