Skip to main content
Log in

Expression of soluble moloney murine leukemia virus-reverse transcriptase in Escherichia coli BL21 star (DE3) using autoinduction system

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Autoinduction systems in Escherichia coli can control the production of proteins without the addition of a particular inducer. In the present study, we optimized the heterologous expression of Moloney Murine Leukemia Virus derived Reverse Transcriptase (MMLV-RT) in E. coli. Among 4 autoinduction media, media Imperial College resulted the highest MMLV-RT overexpression in E. coli BL21 Star (DE3) with incubation time 96 h. The enzyme was produced most optimum in soluble fraction of lysate cells. The MMLV-RT was then purified using the Immobilized Metal Affinity Chromatography method and had specific activity of 629.4 U/mg. The system resulted lower specific activity and longer incubation of the enzyme than a classical Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction system. However, the autoinduction resulted higher yield of the enzyme than the conventional induction (27.8%). Techno Economic Analysis revealed that this method could produce MMLV-RT using autoinduction at half the cost of MMLV-RT production by IPTG-induction. Bioprocessing techniques are necessary to conduct to obtain higher quality of MMLV-RT under autoinduction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Haddad F, Baldwin KM (2010) Reverse transcription of the ribonucleic acid: the first step in RT-PCR assay. Methods Mol Biol. https://doi.org/10.1007/978-1-60761-629-0_17

    Article  PubMed  Google Scholar 

  2. Rifkind D, Freeman GL (2005) Reverse transcriptase. The Nobel Prize winning discoveries in infectious diseases. Elsevier, pp 115–117

    Chapter  Google Scholar 

  3. Kostoulas P, Eusebi P, Hartnack S (2021) diagnostic accuracy estimates for COVID-19 real-time polymerase chain reaction and lateral flow immunoassay tests with bayesian latent-class models. Am J Epidemiol 190:1689–1695. https://doi.org/10.1093/aje/kwab093

    Article  PubMed  PubMed Central  Google Scholar 

  4. Saeed H, Osama H, Madney YM, Harb HS, Abdelrahman MA, Ehrhardt C, Abdelrahim MEA (2021) COVID-19; current situation and recommended interventions. Int J Clin Pract. https://doi.org/10.1111/ijcp.13886

    Article  PubMed  Google Scholar 

  5. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fakruddin Md, Bin MKS, Andrews S (2013) Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol 2013:1–6. https://doi.org/10.1155/2013/703813

    Article  Google Scholar 

  7. Kotewicz ML, D’Alessio JM, Driftmier KM, Blodgett KP, Gerard GF (1985) Cloning and overexpression of moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene 35:249–258. https://doi.org/10.1016/0378-1119(85)90003-4

    Article  CAS  PubMed  Google Scholar 

  8. Tanese N, Roth M, Goff SP (1985) Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc Natl Acad Sci 82:4944–4948. https://doi.org/10.1073/pnas.82.15.4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Z, Kuipers G, Niemiec Ł, Baumgarten T, Slotboom DJ, de Gier J-W, Hjelm A (2015) High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Microb Cell Fact 14:142

    Article  PubMed  PubMed Central  Google Scholar 

  10. Khani M-H, Bagheri M (2020) Skimmed milk as an alternative for IPTG in induction of recombinant protein expression. Protein Expr Purif 170:105593. https://doi.org/10.1016/j.pep.2020.105593

    Article  CAS  PubMed  Google Scholar 

  11. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234. https://doi.org/10.1016/j.pep.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  12. Ukkonen K, Mayer S, Vasala A, Neubauer P (2013) Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Protein Expr Purif 91:147–154. https://doi.org/10.1016/j.pep.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Kessler W, Van Den Heuvel J, Rinas U (2011) Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl Microbiol Biotechnol 91:1203–1213

    Article  CAS  PubMed  Google Scholar 

  14. Gordon E, Horsefield R, Swarts HGP, de Pont JJHHM, Neutze R, Snijder A (2008) Effective high-throughput overproduction of membrane proteins in Escherichia coli. Protein Expr Purif 62:1–8. https://doi.org/10.1016/j.pep.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  15. Mayer S, Junne S, Ukkonen K, Glazyrina J, Glauche F, Neubauer P, Vasala A (2014) Lactose autoinduction with enzymatic glucose release: Characterization of the cultivation system in bioreactor. Protein Expr Purif 94:67–72. https://doi.org/10.1016/j.pep.2013.10.024

    Article  CAS  PubMed  Google Scholar 

  16. Potter R, Rosenthal K (2013) High fidelity reverse transcriptase and the uses thereof. US Patent 8,541,219 B2 24 Sept 2013.

  17. Champoux JJ, Schultz SJ (2009) Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription. FEBS J. https://doi.org/10.1111/j.1742-4658.2009.06909

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nuryana I, Laksmi FA, Agustriana E, Dewi KS, Andriani A, Thontowi A, Kusharyoto W, Lisdiyanti P (2022) Expression of codon-optimized gene encoding murine moloney leukemia virus reverse transcriptase in Escherichia coli. Protein J. https://doi.org/10.1007/s10930-022-10066-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dewi KS, Permadi DG, Aminah FAM (2020) Expression of recombinant human granulocyte-colony stimulating factor in Escherichia coli using various induction methods. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/439/1/012042

    Article  Google Scholar 

  20. Jeong H, Kim HJ, Lee SJ (2015) Complete genome sequence of Escherichia coli strain BL21. Genome Announc. https://doi.org/10.1128/genomeA.00134-15

    Article  PubMed  PubMed Central  Google Scholar 

  21. Du F, Liu Y-Q, Xu Y-S, Li Z-J, Wang Y-Z, Zhang Z-X, Sun X-M (2021) Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microb Cell Fact 20:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Galluccio M, Console L, Pochini L, Scalise M, Giangregorio N, Indiveri C (2022) Strategies for successful over-expression of human membrane transport systems using bacterial hosts: future perspectives. Int J Mol Sci 23:3823. https://doi.org/10.3390/ijms23073823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang T-G, Hong S-H, Jeon G-B, Yang Y-H, Kim S-K (2021) Perturbation of the peptidoglycan network and utilization of the signal recognition particle-dependent pathway enhances the extracellular production of a truncational mutant of CelA in Escherichia coli. J Ind Microbiol Biotechnol. https://doi.org/10.1093/jimb/kuab032

    Article  PubMed  PubMed Central  Google Scholar 

  24. Briand L, Marcion G, Kriznik A, Heydel JM, Artur Y, Garrido C, Seigneuric R, Neiers F (2016) A self-inducible heterologous protein expression system in Escherichia coli. Sci Rep 6:33037. https://doi.org/10.1038/srep33037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mostovenko E, Deelder AM, Palmblad M (2011) Protein expression dynamics during Escherichia coli glucose-lactose diauxie. BMC Microbiol 11:126. https://doi.org/10.1186/1471-2180-11-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Traxler MF, Chang D-E, Conway T (2006) Guanosine 3′,5′-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli. Proc Natl Acad Sci 103:2374–2379. https://doi.org/10.1073/pnas.0510995103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoopes JT, Elberson MA, Preston RJ, Reddy PT, Kelman Z (2015) Protein labeling in Escherichia coli with 2H, 13C, and 15N. Methods Enzymol. https://doi.org/10.1016/bs.mie.2015.08.023

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yan J (2004) Effects of lactose as an inducer on expression of Helicobacter pylori rUreB and rHpaA, and Escherichia coli rLTKA63 and rLTB. World J Gastroenterol 10:1755. https://doi.org/10.3748/wjg.v10.i12.1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fox BG, Blommel PG (2009) Autoinduction of protein expression. Curr Protoc Protein Sci. https://doi.org/10.1002/0471140864.ps0523s56

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rajan R, Ahmed S, Sharma N, Kumar N, Debas A, Matsumura K (2021) Review of the current state of protein aggregation inhibition from a materials chemistry perspective: special focus on polymeric materials. Mater Adv 2:1139–1176. https://doi.org/10.1039/D0MA00760A

    Article  CAS  Google Scholar 

  31. Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8. https://doi.org/10.1016/S1046-5928(02)00641-1

    Article  CAS  PubMed  Google Scholar 

  32. Mitraki A, King J (1989) Protein folding intermediates and inclusion body formation. Nat Biotechnol 7:690–697. https://doi.org/10.1038/nbt0789-690

    Article  CAS  Google Scholar 

  33. Huang C-J, Peng H-L, Patel AK, Singhania RR, Dong C-D, Cheng C-Y (2021) Effects of lower temperature on expression and biochemical characteristics of hcv ns3 antigen recombinant protein. Catalysts 11:1297. https://doi.org/10.3390/catal11111297

    Article  CAS  Google Scholar 

  34. Wingfield PT (2014) Preparation of soluble proteins from Escherichia coli. Curr Protoc Protein Sci. https://doi.org/10.1002/0471140864.ps0602s78

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wei D, Wang M, Wang H, Liu G, Fang J, Jiang Y (2022) Development of a method for fast assessment of protein solubility based on ultrasonic dispersion and differential centrifugation technology. ACS Omega 7:31338–31347. https://doi.org/10.1021/acsomega.2c03666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Silprasit K, Thammaporn R, Hannongbua S, Choowongkomon K (2008) Cloning expression purification determining activity of recombinant HIV-1 reverse transcriptase. Agri Nat Resour 42(5):231–239

    Google Scholar 

  37. Lu M, Ngo W, Mei Y, Munshi V, Burlein C, Loughran MH, Williams PD, Hazuda DJ, Miller MD, Grobler JA, Diamond TL, Lai MT (2010) Purification of untagged HIV-1 reverse transcriptase by affinity chromatography. Protein Expr Purif 71(2):231–239. https://doi.org/10.1016/j.pep.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  38. Roshanak S, Yarabbi H, Shahidi F et al (2023) Effects of adding poly-histidine tag on stability, antimicrobial activity and safety of recombinant buforin I expressed in periplasmic space of Escherichia coli. Sci Rep 13:5508–5511. https://doi.org/10.1038/s41598-023-32782-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamdane D, Skouloubris S, Myllykallio H, Golinelli-Pimpaneau B (2010) Expression and purification of untagged and histidine-tagged folate-dependent tRNA:m5U54 methyltransferase from Bacillus subtilis. Protein Expr Purif 73(1):83–89. https://doi.org/10.1016/j.pep.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  40. Fan Q, Neubauer P, Gimpel M (2021) Production of soluble regulatory hydrogenase from Ralstonia eutropha in Escherichia coli using a fed-batch-based autoinduction system. Microb Cell Fact 20:201. https://doi.org/10.1186/s12934-021-01690-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tahara N, Tachibana I, Takeo K, Yamashita S, Shimada A, Hashimoto M, Ohno S, Yokogawa T, Nakagawa T, Suzuki F, Ebihara A (2021) Boosting auto-induction of recombinant proteins in Escherichia coli with glucose and lactose additives. Protein Pept Lett 28(10):1180–1190. https://doi.org/10.2174/0929866528666210805120715

    Article  CAS  PubMed  Google Scholar 

  42. Li Z, Kessler W, van den Heuvel J, Rinas U (2011) Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl Microbiol Biotechnol 91(4):1203–1213. https://doi.org/10.1007/s00253-011-3407-z

    Article  CAS  PubMed  Google Scholar 

  43. Chen WB, Nie Y, Mu XQ et al (2014) Auto-induction-based rapid evaluation of extracellular enzyme expression from lac operator-involved recombinant Escherichia coli. Appl Biochem Biotechnol 174:2516–2526. https://doi.org/10.1007/s12010-014-1201-y

    Article  CAS  PubMed  Google Scholar 

  44. Isakova A, Artykov A, Vorontsova Y et al (2023) Application of an autoinduction strategy to optimize the heterologous production of an antitumor bispecific fusion protein based on the TRAIL receptor-selective mutant variant in Escherichia coli. Mol Biotechnol 65:581–589. https://doi.org/10.1007/s12033-022-00561-6

    Article  CAS  PubMed  Google Scholar 

  45. Menacho-Melgar R, Ye Z, Moreb EA, Yang T, Efromson JP, Decker JS, Wang R, Lynch MD (2020) Scalable, two-stage, autoinduction of recombinant protein expression in E. coli utilizing phosphate depletion. Biotechnol Bioeng 117(9):2715–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Team of Extremophile Enzyme, Research Center of Applied Microbiology, National Research and Innovation Agency for permission, guidance, and facilities.

Funding

This research was supported by Indonesia Endowment Fund for Education (LPDP) Program in fiscal year 2021 for National Priority Program for COVID-19.

Author information

Authors and Affiliations

Authors

Contributions

CV carried out the research, analyzed and interpreted the data, and wrote the manuscript, FAL designed the research and reviewed the manuscript, IN analyzed and interpreted the data and wrote the manuscript, AA provided supervision, wrote and reviewed the manuscript, NR provided supervision and reviewed the manuscript, EA wrote the manuscript, AP reviewed the manuscript.

Corresponding authors

Correspondence to Fina Amreta Laksmi or Ade Andriani.

Ethics declarations

Competing interests

The authors report no conflict of interest.

Ethical approval

It is not applicable for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handayani, C.V., Laksmi, F.A., Andriani, A. et al. Expression of soluble moloney murine leukemia virus-reverse transcriptase in Escherichia coli BL21 star (DE3) using autoinduction system. Mol Biol Rep 51, 628 (2024). https://doi.org/10.1007/s11033-024-09583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09583-6

Keywords

Navigation