Skip to main content

Advertisement

Log in

MiR-26b-5p/TET3 regulates the osteogenic differentiation of human bone mesenchymal stem cells and bone reconstruction in female rats with calvarial defects

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration.

Methods and results

Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3’ untranslated region of TET3 mRNA to mediate gene silencing.

Conclusions

MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data is provided within the manuscript or supplementary information files.

References

  1. Salhotra A, Shah HN, Levi B, Longaker MT (2020) Mechanisms of bone development and repair. Nat Rev Mol Cell Bio 21(11):696–711. https://doi.org/10.1038/s41580-020-00279-w

    Article  CAS  Google Scholar 

  2. Doi K, Kawakami F, Hiura Y, Oda T, Sakai K, Kawai S (1995) One-stage treatment of infected bone defects of the tibia with skin loss by free vascularized osteocutaneous grafts. Microsurgery 16(10):704–712. https://doi.org/10.1002/micr.1920161009

    Article  CAS  PubMed  Google Scholar 

  3. Kengelbach-Weigand A, Thielen C, Bäuerle T, Götzl R, Gerber T, Körner C, Beier JP, Horch RE, Boos AM (2021) Personalized medicine for reconstruction of critical-size bone defects – a translational approach with customizable vascularized bone tissue. NPJ Regen Med 6(1):49. https://doi.org/10.1038/s41536-021-00158-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petrella G, Tosi D, Pantaleoni F, Adani R (2021) Vascularized bone grafts for post-traumatic defects in the upper extremity. Arch Plast Surg 48(01):84–90. https://doi.org/10.5999/aps.2020.00969

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E (2023) Bioactive scaffolds as a promising alternative for enhancing critical-size bone defect regeneration in the Craniomaxillofacial Region. ACS Appl Bio Mater 6(11):4465–4503. https://doi.org/10.1021/acsabm.3c00432

    Article  CAS  PubMed  Google Scholar 

  6. Nakagawa S, Ando W, Shimomura K, Hart DA, Hanai H, Jacob G, Chijimatsu R, Yarimitu S, Fujie H, Okada S, Tsumaki N, Nakamura N (2023) Repair of osteochondral defects: efficacy of a tissue-engineered hybrid implant containing both human MSC and human iPSC-cartilaginous particles. NPJ Regen Med 8(1):59. https://doi.org/10.1038/s41536-023-00335-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chai S, Huang J, Mahmut A, Wang B, Yao Y, Zhang X, Zhuang Z, Xie C, Xu Z, Jiang Q (2022) Injectable photo-crosslinked bioactive BMSCs-BMP2-GelMA scaffolds for bone defect repair. Front Bioeng Biotech 10:875363. https://doi.org/10.3389/fbioe.2022.875363

  8. Hensley AP, McAlinden A (2021) The role of microRNAs in bone development. Bone 143:115760. https://doi.org/10.1016/j.bone.2020.115760

  9. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. https://doi.org/10.1038/nrg3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gordon JAR, Stein JL, Westendorf JJ, van Wijnen AJ (2015) Chromatin modifiers and histone modifications in bone formation, regeneration, and therapeutic intervention for bone-related disease. Bone 81:739–745. https://doi.org/10.1016/j.bone.2015.03.011

  11. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402. https://doi.org/10.3389/fendo.2018.00402

  12. Incoronato M, Urso L, Portela A, Laukkanen MO, Soini Y, Quintavalle C, Keller S, Esteller M, Condorelli G (2011) Epigenetic regulation of miR-212 expression in lung cancer. PLoS ONE 6(11):e27722. https://doi.org/10.1371/journal.pone.0027722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ke X, Qu Y, Rostad K, Li W, Lin B, Halvorsen OJ, Haukaas SA, Jonassen I, Petersen K, Goldfinger N, Rotter V, Akslen LA, Oyan AM, Kalland K-H (2009) Genome-wide profiling of histone H3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS ONE 4(3):e4687. https://doi.org/10.1371/journal.pone.0004687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, Park S-M, Catena R, Do Y, Brazin J, Vahdat Linda T, Silver Randi B, Mittal V (2013) Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23(1):63–76. https://doi.org/10.1016/j.ccr.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki H, Maruyama R, Yamamoto E, Kai M (2013) Epigenetic alteration and microRNA dysregulation in cancer. Front Genet 4:258. https://doi.org/10.3389/fgene.2013.00258

  16. Wang B, Liu Y, Luo F, Xu Y, Qin Y, Lu X, Xu W, Shi L, Liu Q, Xiang Q (2016) Epigenetic silencing of microRNA-218 via EZH2-mediated H3K27 trimethylation is involved in malignant transformation of HBE cells induced by cigarette smoke extract. Arch Toxicol 90(2):449–461. https://doi.org/10.1007/s00204-014-1435-z

    Article  CAS  PubMed  Google Scholar 

  17. Lu X, Zhang Y, Zheng Y, Chen B (2021) The miRNA-15b/USP7/KDM6B axis engages in the initiation of osteoporosis by modulating osteoblast differentiation and autophagy. J Cell Mol Med 25(4):2069–2081. https://doi.org/10.1111/jcmm.16139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang Y, Zhang L, Tu T, Li Y, Murray D, Tu Q, Chen JJ (2018) MicroRNA-99a is a novel regulator of KDM6B-mediated osteogenic differentiation of BMSCs. J Cell Mol Med 22(4):2162–2176. https://doi.org/10.1111/jcmm.13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng H, Wang N, Li L, Ge L, Jia H, Fan Z (2021) Mir-140-3p enhanced the osteo/odontogenic differentiation of DPSCs via inhibiting KMT5B under hypoxia condition. Int J Oral Sci 13(1):41. https://doi.org/10.1038/s41368-021-00148-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C, Liu K, Shan S, Zhou R, Li X, Dong H (2023) Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov 9(1):188. https://doi.org/10.1038/s41420-023-01489-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee S-H, Kim O, Kim H-J, Hwangbo C, Lee J-H (2021) Epigenetic regulation of TGF-β-induced EMT by JMJD3/KDM6B histone H3K27 demethylase. Oncogenesis 10(2):17. https://doi.org/10.1038/s41389-021-00307-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abu-Hanna J, Patel JA, Anastasakis E, Cohen R, Clapp LH, Loizidou M, Eddama MMR (2022) Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: a review of the literature. Clin Epigenetics 14(1):98. https://doi.org/10.1186/s13148-022-01305-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu J, Yu B, Hong C, Wang C-Y (2013) KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 5(4):200–205. https://doi.org/10.1038/ijos.2013.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu D, Wang Y, Jia Z, Wang L, Wang J, Yang D, Song J, Wang S, Fan Z (2015) Demethylation of IGFBP5 by histone demethylase KDM6B promotes mesenchymal stem cell-mediated periodontal tissue regeneration by enhancing osteogenic differentiation and anti-inflammation potentials. Stem Cells 33(8):2523–2536. https://doi.org/10.1002/stem.2018

    Article  CAS  PubMed  Google Scholar 

  25. Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park N-H, Wang C-Y (2018) Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 23(6):898–899. https://doi.org/10.1016/j.stem.2018.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han X, Fan Z (2021) MicroRNAs regulation in osteogenic differentiation of mesenchymal stem cells. Front Dent Med 2:747068. https://doi.org/10.3389/fdmed.2021.747068

    Article  Google Scholar 

  27. Foessl I, Kotzbeck P, Obermayer-Pietsch B (2019) miRNAs as novel biomarkers for bone related diseases. J Lab Precis Med 4. https://doi.org/10.21037/jlpm.2018.12.06

    Article  Google Scholar 

  28. Valenti MT, Dalle Carbonare L, Mottes M (2018) Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (review). Int J Mol Med 41(5):2441–2449. https://doi.org/10.3892/ijmm.2018.3452

    Article  CAS  PubMed  Google Scholar 

  29. Ye W, Yang Z, Cao F, Li H, Zhao T, Zhang H, Zhang Z, Yang S, Zhu J, Liu Z, Zheng J, Liu H, Ma G, Guo Q, Wang X (2022) Articular cartilage reconstruction with TGF-β1-simulating self-assembling peptide hydrogel-based composite scaffold. Acta Biomater 146:94–106. https://doi.org/10.1016/j.actbio.2022.05.012

  30. Yang S, Wang C, Zhu J, Lu C, Li H, Chen F, Lu J, Zhang Z, Yan X, Zhao H, Sun X, Zhao L, Liang J, Wang Y, Peng J, Wang X (2020) Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 10(18):8227–8249. https://doi.org/10.7150/thno.44276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu J, Shen X, Sun X, Yin H, Yang S, Lu C, Wang Y, Liu Y, Huang Y, Yang Z, Dong X, Wang C, Guo Q, Zhao L, Sun X, Lu S, Mikos AG, Peng J, Wang X (2018) Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics 8(18):5039–5058. https://doi.org/10.7150/thno.26981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu J, Yang S, Qi Y, Gong Z, Zhang H, Liang K, Shen P, Huang Y-Y, Zhang Z, Ye W, Yue L, Fan S, Shen S, Mikos AG, Wang X, Fang X (2022) Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci Adv 8(13):eabk0011. https://doi.org/10.1126/sciadv.abk0011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han X, Yang R, Yang H, Cao Y, Han N, Zhang C, Shi R, Zhang Z, Fan Z (2020) miR-4651 inhibits cell proliferation of gingival mesenchymal stem cells by inhibiting HMGA2 under nifedipine treatment. Int J Oral Sci 12(1):10. https://doi.org/10.1038/s41368-020-0076-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang H, Cao Y, Zhang J, Liang Y, Su X, Zhang C, Liu H, Han X, Ge L, Fan Z (2020) DLX5 and HOXC8 enhance the chondrogenic differentiation potential of stem cells from apical papilla via LINC01013. Stem Cell Res Ther 11(1):271. https://doi.org/10.1186/s13287-020-01791-8

  35. Montibus B, Cercy J, Bouschet T, Charras A, Maupetit-Méhouas S, Nury D, Gonthier-Guéret C, Chauveau S, Allegre N, Chariau C, Hong CC, Vaillant I, Marques CJ, Court F, Arnaud P (2021) TET3 controls the expression of the H3K27me3 demethylase Kdm6b during neural commitment. Cell Mol Life Sci 78(2):757–768. https://doi.org/10.1007/s00018-020-03541-8

    Article  CAS  PubMed  Google Scholar 

  36. Hansen MS, Madsen K, Price M, Søe K, Omata Y, Zaiss MM, Gorvin CM, Frost M, Rauch A (2024) Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res 12(1):5. https://doi.org/10.1038/s41413-023-00312-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang J, Liu S, Li J, Zhao S, Yi Z (2019) Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Res Ther 10(1):197. https://doi.org/10.1186/s13287-019-1309-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei F, Yang S, Guo Q, Zhang X, Ren D, Lv T, Xu X (2017) MicroRNA-21 regulates osteogenic differentiation of periodontal ligament stem cells by targeting Smad5. Sci Rep 7(1):16608. https://doi.org/10.1038/s41598-017-16720-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma J, Lin Y, Zhu J, Huang K, Wang Y (2021) MiR-26b-5p regulates the preadipocyte differentiation by targeting FGF21 in goats. Vitro Cell Dev Biol Anim 57(3):257–263. https://doi.org/10.1007/s11626-020-00493-y

    Article  CAS  Google Scholar 

  40. Fang Y, Huang W, Zhu X, Wang X, Wu X, Wang H, Hong W, Yan S, Zhang L, Deng Y, Wei W, Tu J, Zhu C (2024) Epigenetic regulatory axis MIR22-TET3-MTRNR2L2 represses fibroblast-like synoviocyte-mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol 42795. https://doi.org/10.1002/art.42795

  41. Sun Y, Zhang H, Qiu T, Liao L, Su X (2023) Epigenetic regulation of mesenchymal stem cell aging through histone modifications. Genes Dis 10(6):2443–2456. https://doi.org/10.1016/j.gendis.2022.10.030

    Article  CAS  PubMed  Google Scholar 

  42. Chen J, Yu H, Tan X, Mok SWF, Xie Y, Wang Y, Jiang X, Macrae VE, Lan L, Fu X, Zhu D (2023) PFKFB3-driven vascular smooth muscle cell glycolysis promotes vascular calcification via the altered FoxO3 and lactate production. FASEB J 37(10):e23182. https://doi.org/10.1096/fj.202300900R

    Article  CAS  PubMed  Google Scholar 

  43. Xu J, Ren Z, Niu T, Li S (2024) Epigenetic mechanism of miR-26b-5p-enriched MSCs-EVs attenuates spinal cord injury. Regen Ther 25:35–48. https://doi.org/10.1016/j.reth.2023.10.005

  44. Varghese B, Babu S, Jala A, Das P, Raju R, Borkar RM, Adela R (2024) Integrative placental multi-omics analysis reveals perturbed pathways and potential prognostic biomarkers in gestational hypertension. Arch Med Res 55(1):102909. https://doi.org/10.1016/j.arcmed.2023.102909

    Article  CAS  PubMed  Google Scholar 

  45. Chadalawada S, Rathinam SR, Lalitha P, Kannan NB, Devarajan B (2023) Detection of microRNAs expression signatures in vitreous humor of intraocular tuberculosis. Mol Biol Rep 50(12):10061–10072. https://doi.org/10.1007/s11033-023-08819-1

    Article  CAS  PubMed  Google Scholar 

  46. Pedersen OB, Hvas A-M, Pasalic L, Kristensen SD, Grove EL, Nissen PH (2023) Platelet function and maturity and related microRNA expression in whole blood in patients with ST-segment elevation myocardial infarction. Thromb Haemost 124(3):192–202. https://doi.org/10.1055/s-0043-1776305

  47. Li Y, Hu M, Xie J, Li S, Dai L (2023) Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: roles and therapeutic prospects. Stem Cell Res Ther 14(1):166. https://doi.org/10.1186/s13287-023-03393-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Su P, Tian Y, Yang C, Ma X, Wang X, Pei J, Qian A (2018) Mesenchymal stem cell migration during bone formation and bone diseases therapy. Int J Mol Sci 19(8):2343. https://doi.org/10.3390/ijms19082343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sonoyama W, Coppe C, Gronthos S, Shi S (2005) Skeletal stem cells in regenerative medicine. Curr Top Dev Biol 67:305–323. https://doi.org/10.1016/S0070-2153(05)67010-X

    Article  PubMed  Google Scholar 

  50. Wang F, Lian W, Lee MS, Weng W, Huang Y, Chen Y, Sun Y, Wu S, Chuang P, Ko J (2017) Histone demethylase UTX counteracts glucocorticoid deregulation of osteogenesis by modulating histone-dependent and -independent pathways. J Mol Med 95(5):499–512. https://doi.org/10.1007/s00109-017-1512-x

    Article  CAS  PubMed  Google Scholar 

  51. Qiu B, Yang E, Zheng Y, Zhang H (2023) Association between SPRY1 and TET3 in skin photoaging and natural aging mechanisms. J Cosmet Dermatol 23(4):1396–1403. https://doi.org/10.1111/jocd.16115

  52. Salmerón-Bárcenas EG, Zacapala-Gómez AE, Torres-Rojas FI, Antonio-Véjar V, Ávila-López PA, Baños-Hernández CJ, Núñez-Martínez HN, Dircio-Maldonado R, Martínez-Carrillo DN, Ortiz-Ortiz J, Jiménez-Wences H (2024) TET enzymes and 5hmC levels in carcinogenesis and progression of breast cancer: potential therapeutic targets. Int J Mol Sci 25(1):272. https://doi.org/10.3390/ijms25010272

    Article  CAS  Google Scholar 

  53. Liu Y, Wu J, Chen L, Zou J, Yang Q, Tian H, Zheng D, Ji Z, Cai J, Li Z, Chen Y (2024) ncRNAs-mediated overexpression of TET3 predicts unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer. Heliyon 10(3):e24855. https://doi.org/10.1016/j.heliyon.2024.e24855

  54. Katherine G, Walter AO, Emily W, Timothy JP, Gabriela F, Headtlove Essel D, Xiaoyang Z, Eric LS (2023) FoxA1/2-dependent epigenomic reprogramming drives lineage switching in lung adenocarcinoma. bioRxiv 10(30):564775. https://doi.org/10.1101/2023.10.30.564775

  55. Wang C, Ju H, Zhou L, Zhu Y, Wu L, Deng X, Jiang L, Sun L, Xu Y (2024) TET3-mediated novel regulatory mechanism affecting trophoblast invasion and migration: implications for preeclampsia development. Placenta 147:31-41. https://doi.org/10.1016/j.placenta.2024.01.010

  56. Dudakovic A, Jerez S, Deosthale PJ, Denbeigh JM, Paradise CR, Gluscevic M, Zan P, Begun DL, Camilleri ET, Pichurin O, Khani F, Thaler R, Lian JB, Stein GS, Westendorf JJ, Plotkin LI, van Wijnen AJ (2022) MicroRNA-101a enhances trabecular bone accrual in male mice. Sci Rep 12(1):13361. https://doi.org/10.1038/s41598-022-17579-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We acknowledge the funding support from National Key Research and Development Program (Grant No. 2022YFA1104401 and 2022YFC2504201 to Z.F.), National Natural Science Foundation of China (Grant No. 82130028 to Z.F.), CAMS Innovation Fund for Medical Sciences (Grant No. 2019-I2M-5-031 to Z.F.), Innovation Research Team Project of Beijing Stomatological Hospital, Capital Medical University (Grant No. CXTD202204 to Z.F.) and Young Scientist Program of Beijing Stomatological Hospital, Capital Medical University (Grant No. YSP202113 to C.Z.).

Author information

Authors and Affiliations

Authors

Contributions

W.Y. wrote the first draft of the manuscript. W.Y. and C.Z. performed the material preparation, data collection and analysis. C.Z. and Z.F. contributed to the study conception and design. All authors reviewed the final manuscript.

Corresponding authors

Correspondence to Chen Zhang or Zhipeng Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The animal study was approved by the Ethics Committee Agreement of Beijing Statistical Hospital (No. KQYY-202311-006).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Zhang, C. & Fan, Z. MiR-26b-5p/TET3 regulates the osteogenic differentiation of human bone mesenchymal stem cells and bone reconstruction in female rats with calvarial defects. Mol Biol Rep 51, 632 (2024). https://doi.org/10.1007/s11033-024-09577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09577-4

Keywords

Navigation