Skip to main content
Log in

Transcriptome analysis of apical meristem enriched bud samples for size dependent flowering commitment in Crocus sativus reveal role of sugar and auxin signalling

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cultivation of Crocus sativus (saffron) faces challenges due to inconsistent flowering patterns and variations in yield. Flowering takes place in a graded way with smaller corms unable to produce flowers. Enhancing the productivity requires a comprehensive understanding of the underlying genetic mechanisms that govern this size-based flowering initiation and commitment. Therefore, samples enriched with non-flowering and flowering apical buds from small (< 6 g) and large (> 14 g) corms were sequenced.

Methods and results

Apical bud enriched samples from small and large corms were collected immediately after dormancy break in July. RNA sequencing was performed using Illumina Novaseq 6000 to access the gene expression profiles associated with size dependent flowering. De novo transcriptome assembly and analysis using flowering committed buds from large corms at post-dormancy and their comparison with vegetative shoot primordia from small corms pointed out the major role of starch and sucrose metabolism, Auxin and ABA hormonal regulation. Many genes with known dual responses in flowering development and circadian rhythm like Flowering locus T and Cryptochrome 1 along with a transcript showing homology with small auxin upregulated RNA (SAUR) exhibited induced expression in flowering buds. Thorough prediction of Crocus sativus non-coding RNA repertoire has been carried out for the first time. Enolase was found to be acting as a major hub with protein–protein interaction analysis using Arabidopsis counterparts.

Conclusion

Transcripts belong to key pathways including phenylpropanoid biosynthesis, hormone signaling and carbon metabolism were found significantly modulated. KEGG assessment and protein–protein interaction analysis confirm the expression data. Findings unravel the genetic determinants driving the size dependent flowering in Crocus sativus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The Sequencing files were submitted to NCBI under Sequence Read Archive (SRA) with bioproject accession number PRJNA1021807. In addition, supporting datasets are available on public repository platform Zenodo under the DOI: https://doi.org/https://doi.org/10.5281/zenodo.10852852.

References

  1. Brandizzi F, Grilli Caiola M (1998) Flow cytometric analysis of nuclear DNA in Crocus sativus and allies (Iridaceae). Plant Syst Evol 211:149–154. https://doi.org/10.1007/BF00985356

    Article  Google Scholar 

  2. Schmidt T, Heitkam T, Liedtke S, Schubert V, Menzel G (2019) Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. New Phytol 222(4):1965–1980. https://doi.org/10.1111/nph.15715

    Article  CAS  PubMed  Google Scholar 

  3. Busconi M, Wischnitzki E, Del Corvo M, Colli L, Soffritti G, Stagnati L, Fluch S, Sehr EM, de los Mozos PM, Fernández JA (2021) Epigenetic variability among saffron crocus (Crocus sativus L.) accessions characterized by different phenotypes. Front Plant Sci 12:642631. https://doi.org/10.3389/fpls.2021.642631

    Article  PubMed  PubMed Central  Google Scholar 

  4. Douglas MH, Smallfield BM, Wallace AR, McGimpsey JA (2014) Saffron (Crocus sativus L.): the effect of mother corm size on progeny multiplication, flower and stigma production. Sci Hortic 166:50–58. https://doi.org/10.1016/j.scienta.2013.12.007

    Article  Google Scholar 

  5. Qian X, Sun Y, Zhou G, Yuan Y, Li J, Huang H, Xu L, Li L (2019) Single-molecule real-time transcript sequencing identified flowering regulatory genes in Crocus sativus. BMC Genom 20:1–8. https://doi.org/10.1186/s12864-019-6200-5

    Article  CAS  Google Scholar 

  6. Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genom 16:1–4. https://doi.org/10.1186/s12864-015-1894-5

    Article  CAS  Google Scholar 

  7. Jain M, Srivastava PL, Verma M, Ghangal R, Garg R (2016) De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep 6(1):22456. https://doi.org/10.1038/srep22456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharma M, Kaul S, Dhar MK (2019) Transcript profiling of carotenoid/apocarotenoid biosynthesis genes during corm development of saffron (Crocus sativus L.). Protoplasma 256:249–260. https://doi.org/10.1007/s00709-018-1296-z

    Article  CAS  PubMed  Google Scholar 

  9. Gao G, Wu J, Li B, Jiang Q, Wang P, Li J (2021) Transcriptomic analysis of saffron at different flowering stages using RNA sequencing uncovers cytochrome P450 genes involved in crocin biosynthesis. Mol Biol Rep 48:3451–3461. https://doi.org/10.1007/s11033-021-06374-1

    Article  CAS  PubMed  Google Scholar 

  10. Hu J, Liu Y, Tang X, Rao H, Ren C, Chen J, Wu Q, Jiang Y, Geng F, Pei J (2020) Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Sci Rep 10(1):9680. https://doi.org/10.1038/s41598-020-66675-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Renau-Morata B, Nebauer SG, García-Carpintero V, Canizares J, Minguet EG, De los Mozos M, Molina RV (2021) Flower induction and development in saffron: timing and hormone signalling pathways. Ind Crops Prod 164:113370. https://doi.org/10.1016/j.indcrop.2021.113370

    Article  CAS  Google Scholar 

  12. Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK, Rani A, Singh RS, Raizada J, Singh K, Kumar S (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4(1):1–5. https://doi.org/10.1186/1756-0500-4-85

    Article  CAS  Google Scholar 

  13. Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35(3):543–548. https://doi.org/10.1093/molbev/msx319

    Article  CAS  PubMed  Google Scholar 

  14. Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, Gao G (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45(W1):W12–W16. https://doi.org/10.1093/nar/gkx428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiao Y, Hu Q, Zhu Y, Zhu L, Ma T, Zeng H, Zang Q, Li X, Lin X (2018) GOATOOLS: a Python library for Gene Ontology analyses. Sci Rep 8(1):10872. https://doi.org/10.1038/s41598-018-28948-z

    Article  CAS  Google Scholar 

  16. Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, Wu S, Wang Y (2023) SRplot: a free online platform for data visualization and graphing. PLoS ONE 18(11):e0294236. https://doi.org/10.1371/journal.pone.0294236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucl Acids Res. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Negbi M, Dagan B, Dror A, Basker D (1989) Growth, flowering, vegetative reproduction and dormancy in the saffron crocus (Crocus sativus L.). Israel J Bot 38(2–3):95–113. https://doi.org/10.1080/0021213X.1989.10677116

    Article  Google Scholar 

  20. Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339(6120):704–707. https://doi.org/10.1126/science.1230406

    Article  CAS  PubMed  Google Scholar 

  21. Wang JW (2014) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65(17):4723–4730. https://doi.org/10.1093/jxb/eru246

    Article  CAS  PubMed  Google Scholar 

  22. Xing LB, Zhang D, Li YM, Shen YW, Zhao CP, Ma JJ, An N, Han MY (2015) Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh.). Plant Cell Physiol 56(10):2052–68. https://doi.org/10.1007/s11103-018-0801-2

    Article  CAS  PubMed  Google Scholar 

  23. Ortiz-Marchena MI, Romero JM, Valverde F (2015) Photoperiodic control of sugar release during the floral transition: what is the role of sugars in the florigenic signal? Plant Signal Behav 10(5):e1017168. https://doi.org/10.1080/15592324.2015.1017168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cui Z, Zhou B, Zhang Z, Hu Z (2013) Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis Sonn. S Afr J Bot 88:76–79. https://doi.org/10.1016/j.sajb.2013.05.008

    Article  CAS  Google Scholar 

  25. Wang X, Zhao F, Wu Q, Xing S, Yu Y, Qi S (2023) Physiological and transcriptome analyses to infer regulatory networks in flowering transition of Rosa rugosa. Ornam Plant Res 3(1):1–2. https://doi.org/10.48130/OPR-2023-00

    Article  Google Scholar 

  26. Dhami N, Cazzonelli CI (2020) Environmental impacts on carotenoid metabolism in leaves. Plant Growth Regul 92(3):455–477. https://doi.org/10.1007/s10725-020-00661-w

    Article  CAS  Google Scholar 

  27. Das A, Saxena S, Kumar K, Tribhuvan KU, Singh NK, Gaikwad K (2020) Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Mol Biol Rep 47:3305–3317. https://doi.org/10.1007/s11033-020-05400-y

    Article  CAS  PubMed  Google Scholar 

  28. Yeqing C, Jun L, Weinan W, Chunguo F, Guozhen Y, Jingjing S, Jinyi L, Changquan W (2023) Rose long noncoding RNA lncWD83 promotes flowering by modulating ubiquitination of the floral repressor RcMYC2L. Plant Physiol 193(4):2573–2591. https://doi.org/10.1093/plphys/kiad502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhat A, Mishra S, Kaul S, Dhar MK (2024) Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L. Protoplasma. https://doi.org/10.1007/s00709-024-01931-4

    Article  PubMed  Google Scholar 

  30. Kouhi F, Sorkheh K, Ercisli S (2020) MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower. PLosONE. https://doi.org/10.1371/journal.pone.0228850

    Article  Google Scholar 

  31. Li WF, Zhou Q, Ma ZH, Zuo CW, Chu MY, Mao J, Chen BH (2024) Regulatory mechanism of GA3 application on grape (Vitis vinifera L.) berry size. Plant Physiol Biochem 210:108543. https://doi.org/10.1016/j.plaphy.2024.108543

    Article  CAS  PubMed  Google Scholar 

  32. Hu J, Chang X, Zhang Y, Yu X, Qin Y, Sun Y, Zhang L (2021) The pineapple MADS-box gene family and the evolution of early monocot flower. Sci Rep 11(1):849. https://doi.org/10.1038/s41598-020-79163-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomes S, Gunaseelan K, Dragulescu M, Wang YY, Guo L, Schaffer RJ, Varkonyi-Gasic E (2023) A MADS-box gene-induced early flowering pear (Pyrus communis L.) for accelerated pear breeding. Front Plant Sci 14:1235963. https://doi.org/10.3389/fpls.2023.1235963

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang MC, Wu ZC, Chen RY, Abbas F, Hu GB, Huang XM, Guan WS, Xu YS, Wang HC (2023) Single-nucleus RNA sequencing and mRNA hybridization indicate key bud events and LcFT1 and LcTFL1-2 mRNA transportability during floral transition in litchi. J Exp Bot 74(12):3613–3629. https://doi.org/10.1093/jxb/erad103

    Article  CAS  PubMed  Google Scholar 

  35. Eshaghi M, Rashidi-Monfared S (2023) Network preservation analysis to identify transcriptional biomarkers related to flowering in Crocus sativus. Research Square. Preprint at https://doi.org/10.21203/rs.3.rs-3325141/v1

Download references

Acknowledgements

AC is thankful to CSIR, India for fellowship.

Funding

Work was supported by CSIR project MLP0168 (MLP0049).

Author information

Authors and Affiliations

Authors

Contributions

KS and AC designed and conceptualized the work. AC executed the experiments. AC and KS analyzed the data and wrote the manuscript. KS arranged funding.

Corresponding author

Correspondence to Kunal Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors given their consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 119 kb)

Supplementary file2 (XLSX 41 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A., Singh, K. Transcriptome analysis of apical meristem enriched bud samples for size dependent flowering commitment in Crocus sativus reveal role of sugar and auxin signalling. Mol Biol Rep 51, 605 (2024). https://doi.org/10.1007/s11033-024-09574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09574-7

Keywords

Navigation